助力智能化农田作物除草,基于YOLOv7【tiny/l/x】不同系列参数模型开发构建农田作物场景下玉米苗、杂草检测识别分析系统

在我们前面的系列博文中,关于田间作物场景下的作物、杂草检测已经有过相关的开发实践了,结合智能化的设备可以实现只能除草等操作,玉米作物场景下的杂草检测我们则少有涉及,这里本文的主要目的就是想要基于YOLOv7系列的模型来开发构建玉米田间作物场景下的玉米苗和杂草检测识别系统。

春节前后我们已经基于YOLO系列最新的YOLOv8模型开发构建了相应的项目,感兴趣可以自行移步阅读:

《助力智能化农田作物除草,基于轻量级YOLOv8n开发构建农田作物场景下玉米苗、杂草检测识别分析系统》

《助力智能化农田作物除草,基于YOLOv8全系列【n/s/m/l/x】参数模型开发构建农田作物场景下玉米苗、杂草检测识别分析系统》

随后我们基于首个端到端的目标检测模型DETR开发构建了相应的检测模型,如下:

《助力智能化农田作物除草,基于DETR(DEtection TRansformer)模型开发构建农田作物场景下玉米苗、杂草检测识别分析系统》

完成上述开发之后,我们想尝试基于早期开山的YOLOv3模型来开发构建对应的检测模型,如下所示:

《助力智能化农田作物除草,基于YOLOv3全系列【yolov3tiny/yolov3/yolov3spp】参数模型开发构建农田作物场景下玉米苗、杂草检测识别分析系统》

之后我们基于同样的数据使用最为经典的YOLOv5系列的模型来开发构建对应的检测模型,如下:

《助力智能化农田作物除草,基于YOLOv5全系列【n/s/m/l/x】参数模型开发构建农田作物场景下玉米苗、杂草检测识别分析系统》

YOLOv5全系列的模型表现亮眼,激发了我们更进一步的想法,这里我们随后就基于美团视觉团队发布的最新YOLOv6分支模型同样的数据场景开发构建了对应的检测模型,如下:


《助力智能化农田作物除草,基于YOLOv6全系列【n/s/m/l】参数模型开发构建农田作物场景下玉米苗、杂草检测识别分析系统》

至此,整个YOLO家族只剩下YOLOv7尚未使用,所以本文的主要目的就是想要填补这一空挡,来开发对应的检测模型。

首先看下实例效果:

YOLOv7是 YOLO 系列最新推出的YOLO 结构,在 5 帧/秒到 160 帧/秒范围内,其速度和精度都超过了大部分已知的目标检测器,在 GPU V100 已知的 30 帧/秒以上的实时目标检测器中,YOLOv7 的准确率最高。根据代码运行环境的不同(边缘 GPU、普通 GPU 和云 GPU),YOLOv7 设置了三种基本模型,分别称为 YOLOv7-tiny、YOLOv7和 YOLOv7-W6。相比于 YOLO 系列其他网络 模 型 ,YOLOv7 的 检 测 思 路 与YOLOv4、YOLOv5相似,YOLOv7 网络主要包含了 Input(输入)、Backbone(骨干网络)、Neck(颈部)、Head(头部)这四个部分。首先,图片经过输入部分数据增强等一系列操作进行预处理后,被送入主干网,主干网部分对处理后的图片提取特征;随后,提取到的特征经过 Neck 模块特征融合处理得到大、中、小三种尺寸的特征;最终,融合后的特征被送入检测头,经过检测之后输出得到结果。
YOLOv7 网络模型的主干网部分主要由卷积、E-ELAN 模块、MPConv 模块以及SPPCSPC 模块构建而成 。在 Neck 模块,YOLOv7 与 YOLOv5 网络相同,也采用了传统的 PAFPN 结构。FPN是YoloV7的加强特征提取网络,在主干部分获得的三个有效特征层会在这一部分进行特征融合,特征融合的目的是结合不同尺度的特征信息。在FPN部分,已经获得的有效特征层被用于继续提取特征。在YoloV7里依然使用到了Panet的结构,我们不仅会对特征进行上采样实现特征融合,还会对特征再次进行下采样实现特征融合。Head检测头部分,YOLOv7 选用了表示大、中、小三种目标尺寸的 IDetect 检测头,RepConv模块在训练和推理时结构具有一定的区别。

简单看下实例数据情况:

训练数据配置文件如下所示:

# txt path 
train: ./dataset/images/train
val: ./dataset/images/test
test: ./dataset/images/test



# number of classes
nc: 3

# class names
names: ['maize', 'weedhe', 'weedkuo']

这里主要是选择了yolov7-tiny、yolov7和yolov7x这三款不同参数量级的模型来进行开发训练,最终线上选取的是yolov7系列的模型作为推理模型,这里给出来yolov7的模型文件:

# parameters
nc: 3   # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple

# anchors
anchors:
  - [12,16, 19,36, 40,28]  # P3/8
  - [36,75, 76,55, 72,146]  # P4/16
  - [142,110, 192,243, 459,401]  # P5/32

# yolov7 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [32, 3, 1]],  # 0
  
   [-1, 1, Conv, [64, 3, 2]],  # 1-P1/2      
   [-1, 1, Conv, [64, 3, 1]],
   
   [-1, 1, Conv, [128, 3, 2]],  # 3-P2/4  
   [-1, 1, Conv, [64, 1, 1]],
   [-2, 1, Conv, [64, 1, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [[-1, -3, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [256, 1, 1]],  # 11
         
   [-1, 1, MP, []],
   [-1, 1, Conv, [128, 1, 1]],
   [-3, 1, Conv, [128, 1, 1]],
   [-1, 1, Conv, [128, 3, 2]],
   [[-1, -3], 1, Concat, [1]],  # 16-P3/8  
   [-1, 1, Conv, [128, 1, 1]],
   [-2, 1, Conv, [128, 1, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [[-1, -3, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [512, 1, 1]],  # 24
         
   [-1, 1, MP, []],
   [-1, 1, Conv, [256, 1, 1]],
   [-3, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [256, 3, 2]],
   [[-1, -3], 1, Concat, [1]],  # 29-P4/16  
   [-1, 1, Conv, [256, 1, 1]],
   [-2, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [[-1, -3, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [1024, 1, 1]],  # 37
         
   [-1, 1, MP, []],
   [-1, 1, Conv, [512, 1, 1]],
   [-3, 1, Conv, [512, 1, 1]],
   [-1, 1, Conv, [512, 3, 2]],
   [[-1, -3], 1, Concat, [1]],  # 42-P5/32  
   [-1, 1, Conv, [256, 1, 1]],
   [-2, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [[-1, -3, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [1024, 1, 1]],  # 50
  ]

# yolov7 head
head:
  [[-1, 1, SPPCSPC, [512]], # 51
  
   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [37, 1, Conv, [256, 1, 1]], # route backbone P4
   [[-1, -2], 1, Concat, [1]],
   
   [-1, 1, Conv, [256, 1, 1]],
   [-2, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [256, 1, 1]], # 63
   
   [-1, 1, Conv, [128, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [24, 1, Conv, [128, 1, 1]], # route backbone P3
   [[-1, -2], 1, Concat, [1]],
   
   [-1, 1, Conv, [128, 1, 1]],
   [-2, 1, Conv, [128, 1, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [128, 1, 1]], # 75
      
   [-1, 1, MP, []],
   [-1, 1, Conv, [128, 1, 1]],
   [-3, 1, Conv, [128, 1, 1]],
   [-1, 1, Conv, [128, 3, 2]],
   [[-1, -3, 63], 1, Concat, [1]],
   
   [-1, 1, Conv, [256, 1, 1]],
   [-2, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [256, 1, 1]], # 88
      
   [-1, 1, MP, []],
   [-1, 1, Conv, [256, 1, 1]],
   [-3, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [256, 3, 2]],
   [[-1, -3, 51], 1, Concat, [1]],
   
   [-1, 1, Conv, [512, 1, 1]],
   [-2, 1, Conv, [512, 1, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [512, 1, 1]], # 101
   
   [75, 1, RepConv, [256, 3, 1]],
   [88, 1, RepConv, [512, 3, 1]],
   [101, 1, RepConv, [1024, 3, 1]],

   [[102,103,104], 1, IDetect, [nc, anchors]],   # Detect(P3, P4, P5)
  ]

在实验阶段保持完全相同的参数设置,等待全部训练完成之后来从多个指标的维度来进行综合的对比分析。

【Precision曲线】
精确率曲线(Precision-Recall Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率曲线。
根据精确率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察精确率曲线,我们可以根据需求确定最佳的阈值,以平衡精确率和召回率。较高的精确率意味着较少的误报,而较高的召回率则表示较少的漏报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
精确率曲线通常与召回率曲线(Recall Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。
召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。
绘制召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的召回率和对应的精确率。
将每个阈值下的召回率和精确率绘制在同一个图表上,形成召回率曲线。
根据召回率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察召回率曲线,我们可以根据需求确定最佳的阈值,以平衡召回率和精确率。较高的召回率表示较少的漏报,而较高的精确率意味着较少的误报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
召回率曲线通常与精确率曲线(Precision Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能

【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。
F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。
绘制F1值曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率、召回率和F1分数。
将每个阈值下的精确率、召回率和F1分数绘制在同一个图表上,形成F1值曲线。
根据F1值曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
F1值曲线通常与接收者操作特征曲线(ROC曲线)一起使用,以帮助评估和比较不同模型的性能。它们提供了更全面的分类器性能分析,可以根据具体应用场景来选择合适的模型和阈值设置。

【loss曲线】

【mAP0.5】
mAP0.5,也被称为mAP@0.5或AP50,指的是当Intersection over Union(IoU)阈值为0.5时的平均精度(mean Average Precision)。IoU是一个用于衡量预测边界框与真实边界框之间重叠程度的指标,其值范围在0到1之间。当IoU值为0.5时,意味着预测框与真实框至少有50%的重叠部分。
在计算mAP0.5时,首先会为每个类别计算所有图片的AP(Average Precision),然后将所有类别的AP值求平均,得到mAP0.5。AP是Precision-Recall Curve曲线下面的面积,这个面积越大,说明AP的值越大,类别的检测精度就越高。
mAP0.5主要关注模型在IoU阈值为0.5时的性能,当mAP0.5的值很高时,说明算法能够准确检测到物体的位置,并且将其与真实标注框的IoU值超过了阈值0.5。

【mAP0.5:0.95】
mAP0.5:0.95,也被称为mAP@[0.5:0.95]或AP@[0.5:0.95],表示在IoU阈值从0.5到0.95变化时,取各个阈值对应的mAP的平均值。具体来说,它会在IoU阈值从0.5开始,以0.05为步长,逐步增加到0.95,并在每个阈值下计算mAP,然后将这些mAP值求平均。
这个指标考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。当mAP0.5:0.95的值很高时,说明算法在不同阈值下的检测结果均非常准确,覆盖面广,可以适应不同的场景和应用需求。
对于一些需求比较高的场合,比如安全监控等领域,需要保证高的准确率和召回率,这时mAP0.5:0.95可能更适合作为模型的评价标准。
综上所述,mAP0.5和mAP0.5:0.95都是用于评估目标检测模型性能的重要指标,但它们的关注点有所不同。mAP0.5主要关注模型在IoU阈值为0.5时的性能,而mAP0.5:0.95则考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。

从整体实验对比结果来看:tiny系列模型的效果最次,被l和x系列的模型拉开了明显的差距,l和x系列的模型则达到了几近相同的水准,考虑到计算量的问题,这里最终选择使用yolov7来作为最终模型。

接下来我们详细看下yolov7模型的结果详情。

【Batch实例】

【PR曲线】

【训练可视化】

【混淆矩阵】

【离线推理实例】

感兴趣的话都可以自行动手尝试下!

如果自己不具备开发训练的资源条件或者是没有时间自己去训练的话这里我提供出来对应的训练结果可供自行按需索取。

单个模型的训练结果默认YOLOv7-tiny

全系列三个模型的训练结果总集

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/418261.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Android14之解决编译报错:bazel: no such file or directory(一百八十九)

简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 优质专栏:多媒…

如何通过代理IP安全使用Linkedln领英?

LinkedIn是跨境外贸必备的拓客工具,世界各地的许多专业人士都使用领英来作为发布和共享内容的主要工具,这使得它成为跨境出海必备的渠道工具。 但是不少做外贸的朋友都知道,领英账号很容易遭遇限制封禁,但如果善用工具&#xff0…

中小型水库安全监测运营解决方案,筑牢水库安全防线

我国水库大坝具有“六多”的特点。第一,总量多。我国现有水库9.8万座,是世界上水库大坝最多的国家。第二,小水库多。我国现有水库中95%的水库是小型水库。第三,病险水库多。 目前,在我国水库管理中,部分地方…

第3届图像处理与媒体计算国际会议(ICIPMC 2024)即将召开!

2024年第3届图像处理与媒体计算国际会议(ICIPMC2024)将于2024年5月17-19日在中国合肥举行。本次大会由安徽大学、西北工业大学,西北大学和IEEE联合主办。ICIPMC 2024旨在汇集该领域领先的学术科学家、研究人员和学者,并进行交流和…

Linux学习-C语言-运算符

目录 算术运算符: - * /:不能除0 %:不能对浮点数操作 :自增与运算符 i:先用再加 i:先加再用 --:自减运算符 常量,表达式不可以,--,变量可以 赋值运算符 三目运算符 逗号表达式 size…

Opencv基本操作 (上)

目录 图像基本操作 阈值与平滑处理 图像阈值 图像平滑处理 图像形态学操作 图像梯度计算 Sobel 算子 Canny 边缘检测 图像金字塔与轮廓检测 图像轮廓 接口定义 轮廓绘制 轮廓特征与相似 模板匹配 傅里叶变换 傅里叶变换的作用 滤波 图像基本操作 读取图像&…

关键字:private关键字作用,解析及用法

private关键字在 Java 中用于定义类的成员(如变量、方法)的访问权限。它表示该成员只能在类的内部被访问和修改,而在类的外部是不可见的。 以下是private关键字的主要作用和解析: 作用: 封装性:通过将类的…

低代码中的可视化表单:效率与灵活兼备的设计工具

近年来,随着数字化转型的加速推进,企业对于高效率、灵活性和可定制性的软件开发需求不断增长。传统的软件开发过程通常需要耗费大量的时间和资源,而低代码开发平台的出现为企业提供了一种更加快速和灵活的解决方案。在低代码开发平台中&#…

【QT+QGIS跨平台编译】之五十九:【QGIS_CORE跨平台编译】—【错误处理:字符串错误】

文章目录 一、字符串错误二、处理方法三、涉及到的文件四、宽字节与多字节问题五、字符转换处理一、字符串错误 常量中有换行符错误: 也有const char * 到 LPCWSTR 转换的错误 二、处理方法 需要把对应的文档用记事本打开,另存为 “带有BOM的UTF-8” 三、涉及到的文件 src…

Vue3+springboot实现简单登录demo

Vue3从0搭建脚手架步骤【默认已安装node.js】 前置条件:默认已安装node.js、yarn 第一步:创建项目 选择任意一个空白文件夹如下: cmd进入该文件夹下的命令窗口模式,然后输入指令创建vue项目:vue create my-project …

vue3中实现elementPlus表格选中行的上移下移

先看效果&#xff1a; 实现步骤&#xff1a; 1、给el-table添加current-change事件、高亮属性及ref属性 2、给上移下移按钮添加事件 // 定义当前选中的行参数 const currentRow ref<any>(null); // 定义表格的ref const singleTableRef ref(); // 行选中事件 const ha…

【机器学习:Recommendation System】推荐系统

推荐系统&#xff08;或推荐系统&#xff09;是一类机器学习&#xff0c;它使用数据来帮助预测、缩小范围并在呈指数级增长的选项中找到人们正在寻找的内容。 【机器学习&#xff1a;Recommendation System】推荐系统 什么是推荐系统&#xff1f;用例和应用电子商务与零售&…

阿里云轻量服务器,ubuntu20.04安装Redis

第一步&#xff1a;下载xshell7,连接阿里云服务器 就是下图这个ip 第二步&#xff1a;输入用户名和密码 上面那一步完成之后&#xff0c;就会弹出来下面这个图片 用户名是root 密码是你的阿里云服务器密码 如果你要是忘了&#xff0c;如下图&#xff0c;重置密码&#xff0…

AI Agent

目录 一、什么是Agent 二、什么是MetaGPT【多智能体框架介绍】 三、MetaGPT的背景 一、什么是Agent 智能体 LLM观察思考行动记忆 Agent&#xff08;智能体&#xff09; 一个设置了一些目标或任务&#xff0c;可以迭代运行的大型语言模型。这与大型语言模型&#xff08;LLM&am…

ywtool network命令

一.network功能介绍 network功能就是通过脚本的方式配置IP信息&#xff0c;分为4项: (1) 配置单网卡(2)配置br网桥(单网卡)(3)配置bond(两张网卡)(4)配置ovs网桥(单网卡) 日志文件:/var/log/ywtools/ywtools-network.log/usr/local/ywtools/config/config.ini中network参数:…

电子科技大学课程《计算机网络系统》(持续更新)

前言 本校的课程课时有所缩减&#xff0c;因此可能出现与你学习的课程有所减少的情况&#xff0c;因此对其他学校的同学更多的作为参考作用。本文章适合学生的期中期末考试&#xff0c;以及想要考研电子科技大学的同学&#xff0c;电子科技大学同学请先看附言。 第一章 计算…

Mac OS 制作可引导安装器并重新安装系统

Mac 使用 U盘或移动固态硬盘制作可引导的安装器&#xff08;以 Monterey 为例&#xff09; 本教程参考 Apple 官网相关教程 创建可引导 Mac OS 安装器 重新安装 Mac OS 相关名词解释 磁盘分区会将其划分为多个单独的部分&#xff0c;称为分区。分区也称为容器&#xff0c;不同…

AOP(黑马学习笔记)

AOP基础 学习完spring的事务管理之后&#xff0c;接下来我们进入到AOP的学习。 AOP也是spring框架的第二大核心&#xff0c;我们先来学习AOP的基础。 在AOP基础这个阶段&#xff0c;我们首先介绍一下什么是AOP&#xff0c;再通过一个快速入门程序&#xff0c;让大家快速体验A…

易货模式微信小程序的可行性分析

随着移动互联网技术的快速发展&#xff0c;微信小程序作为一种轻量级的应用形态&#xff0c;已经成为众多创业者和服务提供者关注的焦点。微信小程序以其便捷的使用体验、较低的开发成本和广泛的用户基础&#xff0c;成为了各类业务模式的创新平台。在这样的背景下&#xff0c;…

图解知识蒸馏

soft labels与soft predictions越接近越好&#xff0c;通过Loss Fn来实现&#xff0c;产生的数值叫做distillation loss&#xff0c;也叫soft loss。 hard label y与hard prediction越接近越好&#xff0c;通过Loss Fn来实现&#xff0c;产生的数值叫做student loss&#xff0c…