AI Agent

目录

一、什么是Agent

二、什么是MetaGPT【多智能体框架介绍】

三、MetaGPT的背景


一、什么是Agent

智能体 = LLM+观察+思考+行动+记忆

 Agent(智能体) = 一个设置了一些目标或任务,可以迭代运行的大型语言模型。这与大型语言模型(LLM)在像ChatGPT这样的工具中“通常”的使用方式不同。在ChatGPT中,你提出一个问题并获得一个答案作为回应。而Agent拥有复杂的工作流程,模型本质上可以自我对话,而无需人类驱动每一部分的交互。 

我的理解:Agent是赋予大语言模型使用工具的能力,让其不再是简单的QA问答,而是通过用户的提问,大语言模型可以自己本身去使用工具把用户的指令拆分从而更好的挖掘出大语言模型的能力;例如:

Agent爬虫:

①通过bing.search.q + query的方式,构造bing的搜索页面的url

(例如:https://www.bing.com/search?q=)

②通过requests.get获取到搜索页面的结果,使用beautifulsoup解析

③提取里面的文本然后将文本传入大语言模型,进行整理和分析。

上述就是一个智能体的实例,这分别提到Agent的工具调用能力和规划能力,在 LLM 支持的自主Agent系统中,LLM 充当Agents的大脑,并辅以几个关键组成部分:

  • 规划

    • 子目标和分解:Agents将大型任务分解为更小的、可管理的子目标,从而能够有效处理复杂的任务。

    • 反思和完善:Agents可以对过去的行为进行自我批评和自我反思,从错误中吸取教训,并针对未来的步骤进行完善,从而提高最终结果的质量。

  • 记忆

    • 短期记忆:我认为所有的上下文学习(参见提示工程)都是利用模型的短期记忆来学习。

    • 长期记忆:这为Agents提供了长时间保留和回忆(无限)信息的能力,通常是通过利用外部向量存储和快速检索来实现。

  • 工具使用

    • Agents学习调用外部 API 来获取模型权重中缺失的额外信息(通常在预训练后很难更改),包括当前信息、代码执行能力、对专有信息源的访问等。

二、什么是MetaGPT【多智能体框架介绍】

MetaGPT是一个多智能体协作框架,将标准化操作(SOP) 程序编码为提示确保解决问题时采用结构化方法。要求智能体以专家形式参与协作,并按要求生成结构化的输出,例如高质量的需求文档、架构设计图和流程图等。结构化的输出对于单个智能体即是更高层次的思维链(Chain-of-Thought),对于下游角色则是语义清晰、目标明确的上下文(Context)。通过明确定义的角色分工,复杂的工作得以分解为更小、更具体的任务。从而提升了LLMs的输出质量。

①什么是SOP:

SOP是 Standard Operating Procedure三个单词中首字母的大写 ,即标准作业程序,指将某一事件的标准操作步骤和要求以统一的格式描述出来,用于指导和规范日常的工作。SOP的精髓是将细节进行量化,通俗来讲,SOP就是对某一程序中的关键控制点进行细化和量化。SOP不是一个单点任务,而是一个完整的营销、运营、服务体系构成;

②为什么要做SOP?

标准作业流程可缩短大模型对不熟练且复杂的事务所花费的学习时间。只要按照步骤指示就能避免失误与疏忽;

主要特点:

  • 稳定的解决方案:借助SOP,与其他 Agents 相比,MetaGPT 已被证明可以生成更一致和正确的解决方案。

  • 多样化的角色分配:为LLM分配不同角色的能力确保了解决问题的全面性。

在MetaGPT中多智能体 = 智能体+环境+SOP+评审+路由+订阅+经济

  • 智能体:在单个智能体的基础上,扩展了多智能体定义。在多智能体系统中,可以由多个单智能体协同工作,每个智能体都具备独特有的LLM、观察、思考、行动和记忆。

  • 环境:环境是智能体生存和互动的公共场所。智能体从环境中观察到重要信息,并发布行动的输出结果以供其他智能体使用。

  • 标准流程(SOP):这些是管理智能体行动和交互的既定程序,确保系统内部的有序和高效运作。

  • 评审:评审是为了解决幻觉问题。人类的幻觉实际高于大语言模型,但人类已经习惯了幻觉与错误,日常中会通过大量评审来保障复杂工作每一步的可靠性。严谨有效的评审过程能将复杂工作整体的错误率降低90%

  • 路由:通信是智能体之间信息交流的过程。它对于系统内的协作、谈判和竞争至关重要。

  • 订阅:需求说了一个制度改革或市场变化,所有人都应该关注/判断影响/修改计划

  • 经济:这指的是多智能体环境中的价值交换系统,决定资源分配和任务优先级。

三、MetaGPT的背景

在探索大规模语言模型(LLMs)的应用上,自主智能体展现了巨大的潜力,能够增强和模拟人类工作流程。目前研究主要集中在以角色扮演形式驱动LLMs,通过多轮对话解决问题。然而,在面对更为复杂的任务时,简单地连接多个LLM可能导致解决问题的不可控性,难以满足实际需求。人类通过长期实践积累了各种领域的标准操作流程(SOPs),这些SOPs在任务分解和角色协作中发挥着关键作用。

受此启发,DeepWisdom团队在2023年6月开源了MetaGPT框架,火爆全网,并联合KAUST AI中心厦门大学CUHK(SZ)南京大学UPenn以及UCB等众多高校机构的学者进行了广泛深入的研究,为多智能体协作锚定了有效范式。MetaGPT创新性地将SOPs编码为智能体的设计规范和协议,进而实现了人类领域知识的自动嵌入。这一工作为更好地理解和模拟人类工作流程提供了新的途径,为自主智能体在各种任务中的表现和适应性带来了新的可能性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/418238.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

ywtool network命令

一.network功能介绍 network功能就是通过脚本的方式配置IP信息,分为4项: (1) 配置单网卡(2)配置br网桥(单网卡)(3)配置bond(两张网卡)(4)配置ovs网桥(单网卡) 日志文件:/var/log/ywtools/ywtools-network.log/usr/local/ywtools/config/config.ini中network参数:…

电子科技大学课程《计算机网络系统》(持续更新)

前言 本校的课程课时有所缩减,因此可能出现与你学习的课程有所减少的情况,因此对其他学校的同学更多的作为参考作用。本文章适合学生的期中期末考试,以及想要考研电子科技大学的同学,电子科技大学同学请先看附言。 第一章 计算…

Mac OS 制作可引导安装器并重新安装系统

Mac 使用 U盘或移动固态硬盘制作可引导的安装器(以 Monterey 为例) 本教程参考 Apple 官网相关教程 创建可引导 Mac OS 安装器 重新安装 Mac OS 相关名词解释 磁盘分区会将其划分为多个单独的部分,称为分区。分区也称为容器,不同…

AOP(黑马学习笔记)

AOP基础 学习完spring的事务管理之后,接下来我们进入到AOP的学习。 AOP也是spring框架的第二大核心,我们先来学习AOP的基础。 在AOP基础这个阶段,我们首先介绍一下什么是AOP,再通过一个快速入门程序,让大家快速体验A…

易货模式微信小程序的可行性分析

随着移动互联网技术的快速发展,微信小程序作为一种轻量级的应用形态,已经成为众多创业者和服务提供者关注的焦点。微信小程序以其便捷的使用体验、较低的开发成本和广泛的用户基础,成为了各类业务模式的创新平台。在这样的背景下,…

图解知识蒸馏

soft labels与soft predictions越接近越好,通过Loss Fn来实现,产生的数值叫做distillation loss,也叫soft loss。 hard label y与hard prediction越接近越好,通过Loss Fn来实现,产生的数值叫做student loss&#xff0c…

[OpenCv]图像增强

目录 前言 一、灰度变化 二、直方图修整 1.直方图概念 2.直方图变化 3.直方图均衡化 二、图像平滑 1.卷积模板 2.均值滤波 3.高斯滤波 4.中值滤波 三、图像锐化 1.梯度算子 2.使用Laplacian算子进行锐化 3.使用Sobel算子进行锐化 四、代码总结 1.图片 2.代码 …

深度强化学习入门(待修改)

目录 前言 一、强化学习 1.马可洛夫链 2.蒙地卡罗 3.时序差分TD 4.gym学习​编辑 FrozenLake 二、RL基本算法 1.Q-learning和SARSA 2.DQN Deep network Qlearning DQN 三、PG策略算法 总结 前言 这段时间学习深度强化学习的总结。 一、强化学习 强化学习是做出最佳决策的科学…

vue-electron 项目创建记录及注意事项

vue-electron 项目创建记录及注意事项 1、使用vue ui或者命令行创建vue项目 2、添加electron插件 3、安装element-plus: npm install --save element-plus 4、修改配置文件如下图: vue.config.js增加配置: pluginOptions:{ electronOutput: { contextIsolation…

centos物理电脑安装过程(2024年1月)

开机时:CtrlAltDelete键重启电脑 重启开始时:按F11,桌面弹出蓝色框,选择第二个SSK SFD142 1.00,回车 选择install centos7安装 选择后弹出选择安装选项,选择语言 连接无线网络 安装设置,选择磁…

gpt批量原创文章生成器,不限制内容的生成器

在当今的数字化时代,内容创作是网站持续发展的重要组成部分。然而,对于拥有大量内容需求的网站来说,手动创作文章可能会耗费大量时间和精力。为了解决这一问题,许多GPT(生成式预训练模型)文章生成软件应运而…

lv20 QT事件

1 事件模型 2 事件处理 virtual void keyPressEvent(QKeyEvent *event) virtual void keyReleaseEvent(QKeyEvent *event) virtual void mouseDoubleClickEvent(QMouseEvent *event) virtual void mouseMoveEvent(QMouseEvent *event) virtual void mousePressEvent(QMou…

C++笔记(六)--- 静态成员变量/函数(static)

目录 C语言中静态变量 C静态成员变量 C静态成员函数 C语言中静态变量 1.函数内部用static修饰的变量,只能在此函数使用,但所修饰的变量不随函数释放而释放,下次调用时的值仍为上次结束时的值2.static修饰的全局变量只能在其定义的文件使用…

吴恩达《机器学习》学习笔记

本笔记资料来源于 http://www.ai-start.com/ml2014/,该笔记来自于https://blog.csdn.net/dadapongi6/article/details/105668394,看了忘,忘了看,再看一遍。 时间统计:2024.2.29 5个番茄钟,从week1开始&…

智慧城市:打造宜居环境,引领未来可持续发展

随着科技的不断进步与创新,我们的城市正步入一个崭新的时代——智慧城市。智慧城市是指运用信息技术和大数据等现代科技手段,对城市基础设施、公共服务和社会管理进行智能化改造,实现城市各领域的智能化、信息化和高效化。今天,就…

【六袆 - MySQL】MySQL 5.5及更高版本中,InnoDB是新表的默认存储引擎;

InnoDB 这是一个MySQL组件,结合了高性能和事务处理能力,以确保可靠性、健壮性和并发访问。它体现了ACID设计哲学。它作为一个存储引擎存在,处理使用ENGINEINNODB子句创建的或修改的表。请参阅第14章“InnoDB存储引擎”以获取有关架构细节和管…

Prometheus 安装指南

目录 介绍 安装 介绍 Prometheus是一款开源监控系统,适用于容器化和微服务。它使用多维数据模型,支持PromQL查询语言,可以通过多种方式采集数据。具备灵活的告警和通知机制,可集成图形工具创建仪表盘。通过本地存储高效保存时间…

2024-02-29(Flink)

1.Flink原理(角色分工) 2.Flink执行流程 on yarn版: 3.相关概念 1)DataFlow:Flink程序在执行的时候会被映射成一个数据流模型; 2)Operator:数据流模型中的每一个操作被称作Operat…

IDC 中搭建 Serverless 应用平台:通过 ACK One 和 Knative 玩转云资源

作者:元毅、庄宇 如何打造云上(公共云)、云下(IDC 数据中心)统一的云原生 Serverless 应用平台,首先我们来看一下 ChatGPT 4 会给出什么样的答案: 如何打造云上、云下统一的云原生 Serverless…

Linux Shell脚本练习(三)

1、测试用户名与密码是否正确。 2、输出1-1000内的素数。 3、对 100 以内的所有正整数相加求和(1234...100)。 4、输出9*9 乘法表。 5、编写脚本,显示进度条。 、 6、输入三个数并进行升序排序