【EFK】基于K8S构建EFK+logstash+kafka日志平台

基于K8S构建EFK+logstash+kafka日志平台

  • 一、常见日志收集方案
    • 1.1、EFK
    • 1.2、ELK Stack
    • 1.3、ELK +filbeat
    • 1.4、其他方案
  • 二、EFK组件介绍
    • 2.1、Elasticsearch组件
    • 2.2、Filebeat组件
      • 【1】 Filebeat和beat关系
      • 【2】Filebeat是什么
      • 【3】Filebeat工作原理
      • 【4】传输方案
    • 2.3、Logstash组件
    • 2.4、Fluent组件
    • 2.5、fluentd、filebeat、logstash对比分析
  • 三、EFK组件安装
    • 3.1、安装elasticsearch
      • 【1】创建headless service服务
      • 【2】创建Storageclass ,实现存储类动态供给
      • 【3】安装Elasticsearch集群
    • 3.2、安装kibana可视化UI界面
    • 3.3、安装fluentd组件
    • 3.4、测试收集pod容器日志

一、常见日志收集方案

1.1、EFK

在Kubernetes集群上运行多个服务和应用程序时,日志收集系统可以帮助你快速分类和分析由Pod生成的大量日志数据。Kubernetes中比较流行的日志收集解决方案是Elasticsearch、Fluentd和Kibana(EFK)技术栈,也是官方推荐的一种方案。

Elasticsearch是一个实时的,分布式的,可扩展的搜索引擎,它允许进行全文本和结构化搜索以及对日志进行分析。它通常用于索引和搜索大量日志数据,也可以用于搜索许多不同种类的文档。

Elasticsearch通常与Kibana一起部署,kibana可以把Elasticsearch采集到的数据通过dashboard(仪表板)可视化展示出来。Kibana允许你通过Web界面浏览Elasticsearch日志数据,也可自定义查询条件快速检索出elasticccsearch中的日志数据。

Fluentd是一个流行的开源数据收集器,我们在 Kubernetes 集群节点上安装 Fluentd,通过获取容器日志文件、过滤和转换日志数据,然后将数据传递到 Elasticsearch 集群,在该集群中对其进行索引和存储。

1.2、ELK Stack

E - Elasticsearch(简称:ES)
L - Logstash
K - Kibana

Elasticsearch:日志存储和搜索引擎,它的特点有:分布式,零配置,自动发现,索引自动分片,索引副本机制,restful风格接口,多数据源,自动搜索负载等。

Logstash:是一个完全开源的工具,他可以对你的日志进行收集、过滤,并将其存储供以后使用(支持动态的从各种数据源搜集数据,并对数据进行过滤、分析、丰富、统一格式等操作。)。

Kibana 也是一个开源和免费的工具,Kibana可以为 Logstash 和 ElasticSearch 提供的日志分析友好的 Web 界面,可以帮助您汇总、分析和搜索重要数据日志。

在这里插入图片描述
应用程序(AppServer)–>Logstash–>ElasticSearch–>Kibana–>浏览器(Browser):

Logstash收集AppServer产生的Log,并存放到ElasticSearch集群中,而Kibana则从ElasticSearch集群中查询数据生成图表,再返回给Browser。

考虑到聚合端(日志处理、清洗等)负载问题和采集端传输效率,一般在日志量比较大的时候在采集端和聚合端增加队列,以用来实现日志消峰。

1.3、ELK +filbeat

在这里插入图片描述

Filebeat(采集)—> Logstash(聚合、处理)—> ElasticSearch (存储)—>Kibana (展示)

1.4、其他方案

ELK日志流程可以有多种方案(不同组件可自由组合,根据自身业务配置),常见有以下:

Logstash(采集、处理)—> ElasticSearch (存储)—>Kibana (展示)

Logstash(采集)—> Logstash(聚合、处理)—> ElasticSearch (存储)—>Kibana (展示)

Filebeat(采集、处理)—> ElasticSearch (存储)—>Kibana (展示)

Filebeat(采集)—> Logstash(聚合、处理)—> ElasticSearch (存储)—>Kibana (展示)

Filebeat(采集)—> Kafka/Redis(消峰) —> Logstash(聚合、处理)—> ElasticSearch (存储)—>Kibana (展示)

二、EFK组件介绍

2.1、Elasticsearch组件

Elasticsearch 是一个分布式的免费开源搜索和分析引擎,适用于包括文本、数字、地理空间、结构化和非结构化数据等在内的所有类型的数据。

Elasticsearch 在 Apache Lucene 的基础上开发而成,由 Elasticsearch N.V.(即现在的 Elastic)于 2010 年首次发布。Elasticsearch 以其简单的 REST 风格 API、分布式特性、速度和可扩展性而闻名,是 Elastic Stack 的核心组件;
Elastic Stack 是一套适用于数据采集、扩充、存储、分析和可视化的免费开源工具。

人们通常将 Elastic Stack 称为 ELK Stack(代指 Elasticsearch、Logstash 和 Kibana)。
目前 Elastic Stack 包括一系列丰富的轻量型数据采集代理,这些代理统称为 Beats,可用来向 Elasticsearch 发送数据。

2.2、Filebeat组件

【1】 Filebeat和beat关系

filebeat是Beats中的一员。
  Beats是一个轻量级日志采集器,Beats家族有6个成员,早期的ELK架构中使用Logstash收集、解析日志,但是Logstash对内存、cpu、io等资源消耗比较高。相比Logstash,Beats所占系统的CPU和内存几乎可以忽略不计。

目前Beats包含六种工具:
1、Packetbeat:网络数据(收集网络流量数据)
2、Metricbeat:指标(收集系统、进程和文件系统级别的CPU和内存使用情况等数据)
3、Filebeat:日志文件(收集文件数据)
4、Winlogbeat:windows事件日志(收集Windows事件日志数据)
5、Auditbeat:审计数据(收集审计日志)
6、Heartbeat:运行时间监控(收集系统运行时的数据)

【2】Filebeat是什么

Filebeat是用于转发和收集日志数据的轻量级传送工具。Filebeat监视你指定的日志文件或位置,收集日志事件,并将它们转发到Elasticsearch或 Logstash中。
Filebeat的工作方式如下:启动Filebeat时,它将启动一个或多个输入,这些输入将在为日志数据指定的位置中查找。对于Filebeat所找到的每个日志,Filebeat都会启动收集器。每个收集器都读取单个日志以获取新内容,并将新日志数据发送到libbeat,libbeat将聚集事件,并将聚集的数据发送到为Filebeat配置的输出。

工作的流程图如下:
在这里插入图片描述
Filebeat 有两个主要组件:
harvester:一个harvester负责读取一个单个文件的内容。harvester逐行读取每个文件,并把这些内容发送到输出。每个文件启动一个harvester。
Input:一个input负责管理harvesters,并找到所有要读取的源。如果input类型是log,则input查找驱动器上与已定义的log日志路径匹配的所有文件,并为每个文件启动一个harvester。

【3】Filebeat工作原理

在任何环境下,应用程序都有停机的可能性。 Filebeat 读取并转发日志行,如果中断,则会记住所有事件恢复联机状态时所在位置。
Filebeat带有内部模块(auditd,Apache,Nginx,System和MySQL),可通过一个指定命令来简化通用日志格式的收集,解析和可视化。
FileBeat 不会让你的管道超负荷。FileBeat 如果是向 Logstash 传输数据,当 Logstash 忙于处理数据,会通知 FileBeat 放慢读取速度。一旦拥塞得到解决,FileBeat将恢复到原来的速度并继续传播。
Filebeat保持每个文件的状态,并经常刷新注册表文件中的磁盘状态。状态用于记住harvester正在读取的最后偏移量,并确保发送所有日志行。Filebeat将每个事件的传递状态存储在注册表文件中。所以它能保证事件至少传递一次到配置的输出,没有数据丢失。

【4】传输方案

1、output.elasticsearch
如果你希望使用 filebeat 直接向 elasticsearch 输出数据,需要配置 output.elasticsearch
output.elasticsearch:
hosts: [“192.168.40.180:9200”]
2、output.logstash
如果使用filebeat向 logstash输出数据,然后由 logstash 再向elasticsearch 输出数据,需要配置 output.logstash。 logstash 和 filebeat 一起工作时,如果 logstash 忙于处理数据,会通知FileBeat放慢读取速度。一旦拥塞得到解决,FileBeat 将恢复到原来的速度并继续传播。这样,可以减少管道超负荷的情况。
output.logstash:
hosts: [“192.168.40.180:5044”]

3、output.kafka
如果使用filebeat向kafka输出数据,然后由 logstash 作为消费者拉取kafka中的日志,并再向elasticsearch 输出数据,需要配置 output.logstash
output.kafka:
enabled: true
hosts: [“192.168.40.180:9092”]
topic: elfk8stest

2.3、Logstash组件

2.4、Fluent组件

2.5、fluentd、filebeat、logstash对比分析

三、EFK组件安装

在安装Elasticsearch集群之前,我们先创建一个名称空间,在这个名称空间下安装日志收工具elasticsearch、fluentd、kibana。我们创建一个kube-logging名称空间,将EFK组件安装到该名称空间中。

kubectl create ns kube-logging

3.1、安装elasticsearch

首先,我们需要部署一个有3个节点的Elasticsearch集群。
我们使用3个Elasticsearch Pods可以避免高可用中多节点集群中发生的“脑裂”问题。
脑裂问题参考如下:
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-node.html#split-brain

【1】创建headless service服务

[root@master 4]# cat elasticsearch_svc.yaml
apiVersion: v1
kind: Service
metadata:
  name: elasticsearch
  namespace: kube-logging
  labels:
    app: elasticsearch
spec:
  selector:
    app: elasticsearch
  clusterIP: None
  ports:
  - port: 9200
    name: rest
  - port: 9300
    name: inter-node

在kube-logging名称空间定义了一个名为 elasticsearch 的 Service服务,带有app=elasticsearch标签,当我们将 Elasticsearch StatefulSet 与此服务关联时,服务将返回带有标签app=elasticsearch的 Elasticsearch Pods的DNS A记录,然后设置clusterIP=None,将该服务设置成无头服务。最后,我们分别定义端口9200、9300,分别用于与 REST API 交互,以及用于节点间通信。

[root@master 4]# kubectl apply -f elasticsearch_svc.yaml
service/elasticsearch created
[root@master 4]# kubectl get svc -n kube-logging
NAME            TYPE        CLUSTER-IP   EXTERNAL-IP   PORT(S)             AGE
elasticsearch   ClusterIP   None         <none>        9200/TCP,9300/TCP   20s

现在我们已经为 Pod 设置了无头服务和一个稳定的域名.elasticsearch.kube-logging.svc.cluster.local,接下来我们通过 StatefulSet来创建具体的 Elasticsearch的Pod 应用。

【2】创建Storageclass ,实现存储类动态供给

1、安装nfs

[root@master 4]# yum install nfs-utils -y
[root@node01 ~]# yum install nfs-utils -y
[root@node02 ~]#yum install nfs-utils -y
 
[root@master 4]# systemctl start nfs
[root@node01 ~]# systemctl start nfs
[root@node02 ~]# systemctl start nfs

[root@master 4]# systemctl enable nfs.service
[root@node01 ~]# systemctl enable nfs.service
[root@node02 ~]# systemctl enable nfs.service

2、master创建共享目录

[root@master 4]# mkdir /data/v1 -p
# 编辑/etc/exports文件
[root@master 4]# vim /etc/exports
/data/v1 10.32.1.0/24(rw,no_root_squash)
# 加载配置,使配置生效
[root@master 4]# exportfs -arv
exporting 10.32.1.0/24:/data/v1
[root@master 4]# systemctl restart nfs

3、创建nfs作为存储的供应商

  • 创建sa
    kubectl create sa nfs-provisioner
  • 对sa做rbac授权
[root@master 4]# cat rbac.yaml
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: nfs-provisioner-runner
rules:
  - apiGroups: [""]
    resources: ["persistentvolumes"]
    verbs: ["get","list","watch","create","delete"]
  - apiGroups: [""]
    resources: ["persistentvolumeclaims"]
    verbs: ["get", "list", "watch", "update"]
  - apiGroups: ["storage.k8s.io"]
    resources: ["storageclasses"]
    verbs: ["get", "list", "watch"]
  - apiGroups: [""]
    resources: ["events"]
    verbs: ["create", "update", "patch"]
  - apiGroups: [""]
    resources: ["services", "endpoints"]
    verbs: ["get"]
  - apiGroups: ["extensions"]
    resources: ["podsecuritypolicies"]
    resourceNames: ["nfs-provisioner"]
    verbs: ["use"]
---
kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: run-nfs-provisioner
subjects:
  - kind: ServiceAccount
    name: nfs-provisioner
    namespace: default
roleRef:
  kind: ClusterRole
  name: nfs-provisioner-runner
  apiGroup: rbac.authorization.k8s.io
---
kind: Role
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: leader-locking-nfs-provisioner
rules:
  - apiGroups: [""]
    resources: ["endpoints"]
    verbs: ["get", "list", "watch", "create", "update", "patch"]
---
kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: leader-locking-nfs-provisioner
subjects:
- kind: ServiceAccount
  name: nfs-provisioner
  namespace: default
roleRef:
  kind: Role
  name: leader-locking-nfs-provisioner
  apiGroup: rbac.authorization.k8s.io
[root@master 4]# kubectl apply -f rbac.yaml
clusterrole.rbac.authorization.k8s.io/nfs-provisioner-runner created
clusterrolebinding.rbac.authorization.k8s.io/run-nfs-provisioner created
role.rbac.authorization.k8s.io/leader-locking-nfs-provisioner created
rolebinding.rbac.authorization.k8s.io/leader-locking-nfs-provisioner created
  • 创建pod
    把nfs-client-provisioner.tar.gz上传到node工作节点上,手动解压。
    ctr -n=k8s.io image import nfs-client-provisioner.tar.gz
    通过deployment创建pod用来运行nfs-provisioner
[root@master 4]# cat deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
 name: nfs-provisioner
spec:
  selector:
    matchLabels:
     app: nfs-provisioner
  replicas: 1
  strategy:
      type: Recreate
  template:
    metadata:
      labels:
        app: nfs-provisioner
    spec:
      serviceAccount: nfs-provisioner
      containers:
      - name: nfs-provisioner
        # 这个供应商镜像如果有问题,就换成其他的,我的最后换成了
        # registry.cn-beijing.aliyuncs.com/mydlq/nfs-subdir-external-provisioner  前提是这个镜像上传到了node节点
        image: registry.cn-hangzhou.aliyuncs.com/open-ali/xianchao/nfs-client-provisioner:v1
        imagePullPolicy: IfNotPresent
        volumeMounts:
        - name: nfs-client-root
          mountPath: /persistentvolumes
        env:
        - name: PROVISIONER_NAME
          value: example.com/nfs
        - name: NFS_SERVER
          value: 10.32.1.147
          #这个需要写nfs服务端所在的ip地址,大家需要写自己安装了nfs服务的机器ip
        - name: NFS_PATH
          value: /data/v1
      volumes:
        # 这个是nfs服务端共享的目录
        - name: nfs-client-root
          nfs:
           server: 10.32.1.147
           path: /data/v1
[root@master 4]# kubectl apply -f deployment.yaml
deployment.apps/nfs-provisioner configured
[root@master 4]# kubectl get pods -owide| grep nfs
nfs-provisioner-5fb64dc877-4pzbk   1/1     Running   0             6m49s   10.244.196.143   node01   <none>           <none>
  • 创建storageclass
[root@master 4]# cat class.yaml
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: do-block-storage
provisioner: example.com/nfs
[root@master 4]# k apply -f class.yaml
storageclass.storage.k8s.io/do-block-storage created
[root@master 4]# k get sc
NAME               PROVISIONER       RECLAIMPOLICY   VOLUMEBINDINGMODE   ALLOWVOLUMEEXPANSION   AGE
do-block-storage   example.com/nfs   Delete          Immediate           false                  70m

【3】安装Elasticsearch集群

把elasticsearch_7_2_0.tar.gz和busybox.tar.gz
上传到工作节点node01、node02,手动解压:

[root@node01 package]# ctr -n=k8s.io image import elasticsearch_7_2_0.tar.gz
[root@node02 package]# ctr -n=k8s.io image import elasticsearch_7_2_0.tar.gz

更新和应用yaml文件

[root@master 4]# cat elasticsearch-statefulset.yaml
apiVersion: apps/v1
kind: StatefulSet
metadata:
  name: es-cluster
  namespace: kube-logging
spec:
  serviceName: elasticsearch
  replicas: 3
  selector:
    matchLabels:
      app: elasticsearch
  template:
    metadata:
      labels:
        app: elasticsearch
    spec:
      containers:
      - name: elasticsearch
        image: docker.elastic.co/elasticsearch/elasticsearch:7.2.0
        imagePullPolicy: IfNotPresent
        resources:
          limits:
            cpu: 1000m
          requests:
            cpu: 100m
        ports:
          - containerPort: 9200
            name: rest
            protocol: TCP
          - containerPort: 9300
            name: inter-node
            protocol: TCP
        volumeMounts:
        - name: data
          mountPath: /usr/share/elasticsearch/data
        env:
        - name: cluster.name
          value: k8s-logs
        - name: node.name
          valueFrom:
            fieldRef:
              fieldPath: metadata.name
        - name: discovery.seed_hosts
          value: "es-cluster-0.elasticsearch,es-cluster-1.elasticsearch,es-cluster-2.elasticsearch"
        - name: cluster.initial_master_nodes
          value: "es-cluster-0,es-cluster-1,es-cluster-2"
        - name: ES_JAVA_OPTS
          value: "-Xms512m -Xmx512m"
      initContainers:
      - name: fix-permissions
        image: busybox
        imagePullPolicy: IfNotPresent
        command: ["sh", "-c", "chown -R 1000:1000 /usr/share/elasticsearch/data"]
        securityContext:
          privileged: true
        volumeMounts:
        - name: data
          mountPath: /usr/share/elasticsearch/data
      - name: increase-vm-max-map
        image: busybox
        imagePullPolicy: IfNotPresent
        command: ["sysctl", "-w", "vm.max_map_count=262144"]
        securityContext:
          privileged: true
      - name: increase-fd-ulimit
        image: busybox
        imagePullPolicy: IfNotPresent
        command: ["sh", "-c", "ulimit -n 65536"]
        securityContext:
          privileged: true
  volumeClaimTemplates:
  - metadata:
      name: data
      labels:
        app: elasticsearch
    spec:
      accessModes: [ "ReadWriteOnce" ]
      storageClassName: do-block-storage
      resources:
        requests:
          storage: 5Gi

上面内容的解释:在kube-logging的名称空间中定义了一个es-cluster的StatefulSet。
然后,我们使用serviceName 字段与我们之前创建的headless ElasticSearch服务相关联。这样可以确保可以使用以下DNS地址访问StatefulSet中的每个Pod:,es-cluster-[0,1,2].elasticsearch.kube-logging.svc.cluster.local,其中[0,1,2]与Pod分配的序号数相对应。
我们指定3个replicas(3个Pod副本),将selector matchLabels 设置为app: elasticseach。该.spec.selector.matchLabels和.spec.template.metadata.labels字段必须匹配。

[root@master 4]# kubectl get pods -n kube-logging
NAME           READY   STATUS    RESTARTS   AGE
es-cluster-0   1/1     Running   0          10m
es-cluster-1   1/1     Running   0          10m
es-cluster-2   1/1     Running   0          10m
[root@master 4]# kubectl get svc -n kube-logging
NAME            TYPE        CLUSTER-IP   EXTERNAL-IP   PORT(S)             AGE
elasticsearch   ClusterIP   None         <none>        9200/TCP,9300/TCP   6h15m

pod部署完成之后,可以通过REST API检查elasticsearch集群是否部署成功,使用下面的命令将本地端口9200转发到 Elasticsearch 节点(如es-cluster-0)对应的端口:

kubectl port-forward es-cluster-0 9200:9200 --namespace=kube-logging
然后,在另外的终端窗口中,执行如下请求,新开一个master1终端:

[root@master 4]# curl http://localhost:9200/_cluster/state?pretty|head -50
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
 10  146k   10 16294    0     0   310k      0 --:--{-- --:--:-- --:--:--     0
  "cluster_name" : "k8s-logs",
  "cluster_uuid" : "GCzlBOZnT8abADeTCJyrRg",
  "version" : 17,
  "state_uuid" : "yIAM6AEzSdOCgK9FHmuriQ",
  "master_node" : "7UL9lwt2Qa-Rx9S-5hm3tQ",
  "blocks" : { },
  "nodes" : {
    "6FkyqeBnQ9GGJjqxmIK4OA" : {
      "name" : "es-cluster-2",
      "ephemeral_id" : "T8DdDj6tQSm-mERp4rkrNg",
      "transport_address" : "10.244.196.142:9300",
      "attributes" : {
        "ml.machine_memory" : "8201035776",
        "ml.max_open_jobs" : "20",
        "xpack.installed" : "true"
      }
    },
    "7UL9lwt2Qa-Rx9S-5hm3tQ" : {
      "name" : "es-cluster-0",
      "ephemeral_id" : "JFYS2bHqTD-FaxV5IpACWQ",
      "transport_address" : "10.244.196.135:9300",
      "attributes" : {
        "ml.machine_memory" : "8201035776",
        "xpack.installed" : "true",
        "ml.max_open_jobs" : "20"
      }
    },
    "QRd7XeJ5TtO-bdaru3wAkg" : {
      "name" : "es-cluster-1",
      "ephemeral_id" : "uG4ZE_N8QGGNDyXnE4puSQ",
      "transport_address" : "10.244.140.105:9300",
      "attrib:--utes" : {
         "ml.machine_memory" : "8201248768",
-        "ml.max_open_jobs" : "20",
-        "xpack.installed" : "true"
:      }
-    }
-  },
# 看到上面的信息就表明我们名为 k8s-logs 的 Elasticsearch 集群成功创建了3个节点:
# es-cluster-0,es-cluster-1,和es-cluster-2
# 当前主节点是 es-cluster-0

3.2、安装kibana可视化UI界面

[root@master 4]# cat kibana.yaml
apiVersion: v1
kind: Service
metadata:
  name: kibana
  namespace: kube-logging
  labels:
    app: kibana
spec:
  ports:
  - port: 5601
  selector:
    app: kibana
---
apiVersion: apps/v1
kind: Deployment
metadata:
  name: kibana
  namespace: kube-logging
  labels:
    app: kibana
spec:
  replicas: 1
  selector:
    matchLabels:
      app: kibana
  template:
    metadata:
      labels:
        app: kibana
    spec:
      containers:
      - name: kibana
        image: docker.elastic.co/kibana/kibana:7.2.0
        imagePullPolicy: IfNotPresent
        resources:
          limits:
            cpu: 1000m
          requests:
            cpu: 100m
        env:
        - name: ELASTICSEARCH_URL
          value: http://elasticsearch:9200
        ports:
        - containerPort: 5601
[root@master 4]# kubectl apply -f kibana.yaml
[root@master 4]# kubectl get pods -n kube-logging
NAME                     READY   STATUS    RESTARTS   AGE
es-cluster-0             1/1     Running   0          41m
es-cluster-1             1/1     Running   0          41m
es-cluster-2             1/1     Running   0          40m
kibana-69f46c6bd-vm7rh   1/1     Running   0          18m
[root@master 4]#  kubectl get svc -n kube-logging
NAME            TYPE        CLUSTER-IP       EXTERNAL-IP   PORT(S)             AGE
elasticsearch   ClusterIP   None             <none>        9200/TCP,9300/TCP   6h43m
kibana          ClusterIP   10.109.118.117   <none>        5601/TCP            18m
# 修改service的type类型为NodePort:
[root@master 4]#  kubectl edit svc kibana -n kube-logging
[root@master 4]#  kubectl get svc -n kube-logging
NAME            TYPE        CLUSTER-IP       EXTERNAL-IP   PORT(S)             AGE
elasticsearch   ClusterIP   None             <none>        9200/TCP,9300/TCP   6h44m
kibana          NodePort    10.109.118.117   <none>        5601:31598/TCP      20m

在浏览器中打开http://<k8s集群任意节点IP>:31598即可,如果看到如下欢迎界面证明 Kibana 已经成功部署到了Kubernetes集群之中。
在这里插入图片描述

3.3、安装fluentd组件

将镜像上传到各个节点(master、node节点都要上传)
然后解压

[root@master 4]# ctr -n=k8s.io images import fluentd-v1-9-1.tar.gz
[root@node01 package]# ctr -n=k8s.io images import fluentd-v1-9-1.tar.gz
[root@node02 package]# ctr -n=k8s.io images import fluentd-v1-9-1.tar.gz
[root@master 4]# cat fluentd.yaml
apiVersion: v1
kind: ServiceAccount
metadata:
  name: fluentd
  namespace: kube-logging
  labels:
    app: fluentd
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: fluentd
  labels:
    app: fluentd
rules:
- apiGroups:
  - ""
  resources:
  - pods
  - namespaces
  verbs:
  - get
  - list
  - watch
---
kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: fluentd
roleRef:
  kind: ClusterRole
  name: fluentd
  apiGroup: rbac.authorization.k8s.io
subjects:
- kind: ServiceAccount
  name: fluentd
  namespace: kube-logging
---
apiVersion: apps/v1
kind: DaemonSet
metadata:
  name: fluentd
  namespace: kube-logging
  labels:
    app: fluentd
spec:
  selector:
    matchLabels:
      app: fluentd
  template:
    metadata:
      labels:
        app: fluentd
    spec:
      serviceAccount: fluentd
      serviceAccountName: fluentd
      tolerations:
      - key: node-role.kubernetes.io/master
        effect: NoSchedule
      containers:
      - name: fluentd
        image: fluentd:v1.9.1-debian-1.0
        imagePullPolicy: IfNotPresent
        env:
          - name:  FLUENT_ELASTICSEARCH_HOST
            value: "elasticsearch.kube-logging.svc.cluster.local"
          - name:  FLUENT_ELASTICSEARCH_PORT
            value: "9200"
          - name: FLUENT_ELASTICSEARCH_SCHEME
            value: "http"
          - name: FLUENTD_SYSTEMD_CONF
            value: disable
          - name: FLUENT_CONTAINER_TAIL_PARSE_TYPE  # 注意:如果是用containerd做容器运行时,就要加这4行,使用docker则不用
            value: "cri"
          - name: FLUENT_CONTAINER_TAIL_PARSE_TIME_FORMAT
            value: "%Y-%m-%dT%H:%M:%S.%L%z"
        resources:
          limits:
            memory: 512Mi
          requests:
            cpu: 100m
            memory: 200Mi
        volumeMounts:
        - name: varlog
          mountPath: /var/log
        - name: varlibdockercontainers
          mountPath: /var/lib/docker/containers
          readOnly: true
      terminationGracePeriodSeconds: 30
      volumes:
      - name: varlog
        hostPath:
          path: /var/log
      - name: varlibdockercontainers
        hostPath:
          path: /var/lib/docker/containers
[root@master 4]# kubectl apply -f fluentd.yaml
serviceaccount/fluentd unchanged
clusterrole.rbac.authorization.k8s.io/fluentd unchanged
clusterrolebinding.rbac.authorization.k8s.io/fluentd unchanged
daemonset.apps/fluentd created

[root@master 4]# kubectl get pods -n kube-logging
NAME                     READY   STATUS    RESTARTS   AGE
es-cluster-0             1/1     Running   0          17h
es-cluster-1             1/1     Running   0          17h
es-cluster-2             1/1     Running   0          17h
fluentd-8fzqg            1/1     Running   0          23s
fluentd-fjhgg            1/1     Running   0          23s
fluentd-vlhn6            1/1     Running   0          23s
kibana-69f46c6bd-vm7rh   1/1     Running   0          16h

Fluentd 启动成功后,我们可以前往 Kibana 的 Dashboard 页面中,点击左侧的Discover,可以看到如下配置页面:

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

点击左侧的discover,可看到如下:
在这里插入图片描述

3.4、测试收集pod容器日志

[root@master 4]# cat pod.yaml
apiVersion: v1
kind: Pod
metadata:
  name: counter
  #namespace: kube-logging
spec:
  containers:
  - name: count
    image: busybox
    imagePullPolicy: IfNotPresent
    args: [/bin/sh, -c,'i=0; while true; do echo "$i: $(date)"; i=$((i+1)); sleep 60; done']
[root@master 4]# kubectl apply -f pod.yaml
pod/counter created

Kibana查询语言KQL官方地址:
https://www.elastic.co/guide/en/kibana/7.2/kuery-query.html

登录到kibana的控制面板,在discover处的搜索栏中输入kubernetes.pod_name:counter,这将过滤名为的Pod的日志数据counter,如下所示:

在这里插入图片描述

此时日志中的时间是不准确的,需要调整。
pod.yaml调整后可正常显示
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/416685.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Carla自动驾驶仿真八:两种查找CARLA地图坐标点的方法

文章目录 前言一、通过Spectator获取坐标二、通过道路ID获取坐标总结 前言 CARLA没有直接的方法给使用者查找地图坐标点来生成车辆&#xff0c;这里推荐两种实用的方法在特定的地方生成车辆。 一、通过Spectator获取坐标 1、Spectator&#xff08;观察者&#xff09;&#xf…

实战Kafka的部署

目录 一、环境准备 二、安装配置jdk8 &#xff08;1&#xff09;Kafka、Zookeeper&#xff08;简称&#xff1a;ZK&#xff09;运行依赖jdk8 三、安装配置ZK &#xff08;1&#xff09;安装 &#xff08;2&#xff09;配置 四、配置Kafka &#xff08;1&#xff09;配置…

SpringBoot整合rabbitmq-扇形交换机队列(三)

说明&#xff1a;本文章主要是Fanout 扇形交换机的使用&#xff0c;它路由键的概念&#xff0c;绑定了页无用&#xff0c;这个交换机在接收到消息后&#xff0c;会直接转发到绑定到它上面的所有队列。 大白话&#xff1a;广播模式&#xff0c;交换机会把消息发给绑定它的所有队…

day06_菜单管理(查询菜单,添加菜单,添加子菜单,修改菜单,删除菜单,角色分配菜单,查询菜单,保存菜单,动态菜单)

文章目录 1 菜单管理1.1 表结构介绍1.2 查询菜单1.2.1 需求说明1.2.2 页面制作1.2.3 后端接口SysMenuSysMenuControllerSysMenuServiceMenuHelperSysMenuMapperSysMenuMapper.xml 1.2.4 前端对接sysMenu.jssysMenu.vue 1.3 添加菜单1.3.1 需求说明1.3.3 页面制作1.3.3 后端接口…

类加载的过程以及双亲委派模型

类加载&#xff0c;指的是java进程运行的时候&#xff0c;需要把.class文件从硬盘&#xff0c;读取到内存&#xff0c;并进行一系列的校验解析的过程。&#xff08;.class文件 > 类对象&#xff0c;硬盘 > 内存&#xff09; 类加载的过程&#xff0c;类加载的过程其实是在…

探索Sora:AI视频模型的创新与未来展望

✍️作者简介&#xff1a;小北编程&#xff08;专注于HarmonyOS、Android、Java、Web、TCP/IP等技术方向&#xff09; &#x1f433;博客主页&#xff1a; 开源中国、稀土掘金、51cto博客、博客园、知乎、简书、慕课网、CSDN &#x1f514;如果文章对您些帮助请&#x1f449;关…

Python进阶学习:Pandas--查看DataFrame中每一列的数据类型

Python进阶学习&#xff1a;Pandas–查看DataFrame中每一列的数据类型 &#x1f308; 个人主页&#xff1a;高斯小哥 &#x1f525; 高质量专栏&#xff1a;Matplotlib之旅&#xff1a;零基础精通数据可视化、Python基础【高质量合集】、PyTorch零基础入门教程&#x1f448; 希…

数据库子父结构表,树状结构数据进行递归查询

表结构&#xff1a; 三个字段如图所示&#xff0c;目标是获取每条数据的根id&#xff08;父id为0的数据根id就是自己的id,否则一直根据父id去查找一直找到父id为0的数据&#xff0c;此数据的id就是根id&#xff09; 业务中实际的解决办法&#xff1a; 新加一个字段进行存储&…

Python + Google AI 自动修复 Sonar Bug 实践

前言 在工作中总会遇到种种不期而至的需求&#xff0c;比如前段时间突然要修复所有 Sonar Bug&#xff0c;涉及各种琐碎的代码风格问题&#xff0c;包括但不限于语法不规范、废弃注释等问题。这些项目都已经持续开发几年了&#xff0c;Sonar 上的问题层出不穷&#xff0c;各种…

如何在Linux使用Docker部署Nexus容器并实现公网访问本地仓库【内网穿透】

文章目录 1. Docker安装Nexus2. 本地访问Nexus3. Linux安装Cpolar4. 配置Nexus界面公网地址5. 远程访问 Nexus界面6. 固定Nexus公网地址7. 固定地址访问Nexus Nexus是一个仓库管理工具&#xff0c;用于管理和组织软件构建过程中的依赖项和构件。它与Maven密切相关&#xff0c;可…

【airtest】自动化入门教程(一)AirtestIDE

目录 一、下载与安装 1、下载 2、安装 3、打开软件 二、web自动化配置 1、配置chrome浏览器 2、窗口勾选selenium window 三、新建项目&#xff08;web&#xff09; 1、新建一个Airtest项目 2、初始化代码 3、打开一个网页 四、恢复默认布局 五、新建项目&#xf…

流程图怎么画?只需这几步就可以搞定!

你在工作中有没有遇到过下面这些问题&#xff1a; 思维混乱&#xff0c;想快速厘清一个项目的逻辑&#xff1b; 想让客户轻松接受自己的设计构思/产品理念等&#xff1b; 产品流程总是百密一疏&#xff0c;经常遗漏了某种用户需求&#xff1b; 想让小伙伴们快速理解一件事&…

软件项目验收测试报告-软件项目验收流程

对甲方而言&#xff0c;项目验收是正式接受项目成果&#xff0c;将项目从建设转为运营。对于乙方来说&#xff0c;则意味着项目的结束&#xff0c;项目资源的释放。 项目验收是项目收尾的重要环节&#xff0c;依据招投标文件、合同对测评相关要求内容、项目章程和项目过程中的…

LATEX中将表格序号和标题放置在两列/一列【已解决】

目录 LATEX中将表格序号和标题放置在两列 LATEX中将表格序号和标题放置在一列 LATEX中将表格序号和标题放置在两列 每个期刊对于表格的要求不一样&#xff0c;发现期刊要求表格的序号列和标题列是两行且标题大写&#xff0c;如下图所示 而我的表格是这样 解决方法&#xff1a; …

使用Haproxy搭建Web群集

1、Haproxy概述。 Haproxy是目前比较流行的一种群集调度工具&#xff0c;同类群集调度工具有很多&#xff0c;如LVS和Nginx。相比较而言&#xff0c;LVS性能最好&#xff0c;但是搭建相对复杂&#xff1b;Nginx的upstream模块支持群集功能&#xff0c;但是对群集节点健康检查功…

AI未来10年展望

人工智能&#xff08;AI&#xff09;在过去十年中迅速发展&#xff0c;其未来有望取得更加引人注目的发展。 在本文中&#xff0c;我们将探讨人工智能的未来 10 年以及我们对未来十年的期望。 我们将解决一些关键问题&#xff0c;以全面概述人工智能的未来。 1、10年后AI会发展…

前端配置开发环境,新电脑配置前端开发环境,Vue开发环境配置的详细过程(前端开发环境配置,电脑重置后配置前端开发环境)

简介&#xff1a;有时候&#xff0c;我们需要在新电脑 或者 电脑重置后&#xff0c;配置前端开发环境&#xff0c;具体都需要安装什么软件和插件&#xff0c;这里来记录一下&#xff08;文章适合新手和小白&#xff0c;大佬可以带过&#xff09;。 ✨前端开发环境&#xff0c;需…

前端架构: 脚手架之包管理工具的案例对比及workspaces特性的使用与发布过程

npm的workspaces 特性 1 &#xff09;使用或不使用包管理工具的对比 vue-cli 这个脚手架使用 Lerna 管理&#xff0c;它的项目显得非常清晰在 vue-cli 中包含很多 package 点开进去&#xff0c;每一个包都有package.json它里面有很多项目&#xff0c;再没有 Lerna 之前去维护和…

重生奇迹MU攻略教学

1&#xff1a;前提是人物等级到80级&#xff0c;没有80级不能使用。 2&#xff1a;杀怪范围&#xff0c;大家不用改&#xff0c;就8吧&#xff0c;但是有时候也会跑很远。 3&#xff1a;技能近战使用&#xff0c;我作为战士&#xff0c;点了和不点没区别。 4&#xff1a;然后…

【国产MCU】-CH32V307-定时器同步模式

定时器同步模式 文章目录 定时器同步模式1、定时器同步模式介绍2、驱动API介绍3、定时器同步模式实例1、定时器同步模式介绍 CH32V307的定时器能够输出时钟脉冲(TRGO),也能接收其他定时器的输入(ITRx)。不同的定时器的ITRx的来源(别的定时器的TRGO)是不一样的。 通用定…