计算机设计大赛 深度学习实现行人重识别 - python opencv yolo Reid

文章目录

  • 0 前言
  • 1 课题背景
  • 2 效果展示
  • 3 行人检测
  • 4 行人重识别
  • 5 其他工具
  • 6 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 **基于深度学习的行人重识别算法研究与实现 **

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:5分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

在这里插入图片描述

1 课题背景

行人重识别是计算机视觉领域的研究热点之一,旨在研究不重叠的多个摄像区域间对于特定行人的匹配准确率,是图像检索的子问题,多应用于安防和刑侦。我国实现的视频监控“天网”,就是通过在人流量大的公共区域密集安装监控设备来实现“平安城市”建设。尽管部分摄像头可转动,但仍存在监控盲区和死角等局限性问题,Re-
ID技术弥补了摄像设备的视觉局限性。然而,在实际应用中异时异地相同行人的图像数据,在姿势、前景背景、光线视角以及成像分辨率等方面差异大,使得Re-
ID研究具有挑战性。
行人重识别展示

2 效果展示

手动标记在这里插入图片描述
检测结果
在这里插入图片描述

3 行人检测

本项目实现了基于 yolo框架的行人目标检测算法,并将该目标检测算法应用在图像和视频的识别检测之中。

简介
下图所示为 YOLOv5 的网络结构图,分为输入端,Backbone,Neck 和 Prediction 四个部分。其中,
输入端包括 Mosaic 数据增强、自适应图片缩放、自适应锚框计算,Backbone 包括 Focus 结构、CSP
结 构,Neck 包 括 FPN+PAN 结 构,Prediction 包 括GIOU_Loss 结构。
在这里插入图片描述
Head输出层
输出层的锚框机制与YOLOv4相同,主要改进的是训练时的损失函数GIOU_Loss,以及预测框筛选的DIOU_nms。

对于Head部分,可以看到三个紫色箭头处的特征图是40×40、20×20、10×10。以及最后Prediction中用于预测的3个特征图:


①==>40×40×255

②==>20×20×255

③==>10×10×255

在这里插入图片描述
相关代码

class Yolo(object):
    def __init__(self, weights_file, verbose=True):
        self.verbose = verbose
        # detection params
        self.S = 7  # cell size
        self.B = 2  # boxes_per_cell
        self.classes = ["aeroplane", "bicycle", "bird", "boat", "bottle",
                        "bus", "car", "cat", "chair", "cow", "diningtable",
                        "dog", "horse", "motorbike", "person", "pottedplant",
                        "sheep", "sofa", "train","tvmonitor"]
        self.C = len(self.classes) # number of classes
        # offset for box center (top left point of each cell)
        self.x_offset = np.transpose(np.reshape(np.array([np.arange(self.S)]*self.S*self.B),
                                              [self.B, self.S, self.S]), [1, 2, 0])
        self.y_offset = np.transpose(self.x_offset, [1, 0, 2])

        self.threshold = 0.2  # confidence scores threhold
        self.iou_threshold = 0.4
        #  the maximum number of boxes to be selected by non max suppression
        self.max_output_size = 10

        self.sess = tf.Session()
        self._build_net()
        self._build_detector()
        self._load_weights(weights_file)

4 行人重识别

简介
行人重识别(Person re-identification)也称行人再识别, 被广泛认为是一个图像检索的子问题,
是利用计算机视觉技术判断图像或者视频中是否存在特定行人的技术,
即给定一个监控行人图像检索跨设备下的该行人图像。行人重识别技术可以弥补目前固定摄像头的视觉局限, 并可与行人检测、行人跟踪技术相结合,
应用于视频监控、智能安防等领域。
在这里插入图片描述行人重识别系统

行人检测
主要用于检测视频中出现的人像,作为一个行人重识别首先要做到的就是能够将图片中的行人识别出来,称为Gallery输入。当然,在学术研究领域,行人重识别主要还是关注的下面这个部分,而对于行人检测这部分多选择采用目前已经设计好的框架。
行人重识别
这一部分就是对上面的Probe以及Gallery进行特征提取,当然提取的方式可以是手工提取,也可以使用卷积神经网络进行提取。然后呢,就是对图片的相似度进行度量,根据相似图进行排序。
针对行人重识别系统从细节来说,包括下面几个部分:

  • 特征提取(feature Extraction):学习能够应对在不同摄像头下行人变化的特征。
  • 度量学习(Metric Learning) :将学习到的特征映射到新的空间使相同的人更近不同的人更远。
  • 图像检索(Matching):根据图片特征之间的距离进行排序,返回检索结果

Reid提取特征
行人重识别和人脸识别是类似的,刚开始接触的可以认为就是人脸换成行人的识别。

  1. 截取需要识别的行人底库
    在这里插入图片描述

  2. 保存行人特征,方便进行特征比对

相关代码

# features:reid模型输出512dim特征
person_cossim = cosine_similarity(features, self.query_feat)
max_idx = np.argmax(person_cossim, axis=1)
maximum = np.max(person_cossim, axis=1)
max_idx[maximum < 0.6] = -1
score = maximum
reid_results = max_idx
draw_person(ori_img, xy, reid_results, self.names)  # draw_person name

5 其他工具

OpenCV
是一个跨平台的计算机视觉处理开源软件库,是由Intel公司俄罗斯团队发起并参与和维护,支持与计算机视觉和机器学习相关的众多算法。
在这里插入图片描述
本项目中利用opencv进行相关标记工作,相关代码:

import cv2
import numpy as np

def cv_imread(filePath):
    cv_img = cv2.imdecode(np.fromfile(filePath,dtype=np.uint8), -1)
    return cv_img

# 需要可视化的图片地址
img_path = ‘’
# 对应图片的检测结果
detection_result = []

# 如果路径中包含中文,则需要用函数cv_imread的方式来读取,否则会报错
img = cv_imread(img_path)
 # 可视化
for bb in detection_result:
    # bb的格式为:[xmin, ymin, xmax, ymax]
    cv2.rectangle(img, (int(bb[0]), int(bb[1])),
                        (int(bb[2]), int(bb[3])),
                         (255, 0, 0), 2)

cv2.imshow('1', img)
cv2.waitKey(0)

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/413327.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

用html编写的简易新闻页面

用html编写的简易新闻页面 相关代码 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document<…

了解TCP传输控制协议

了解TCP传输控制协议 TCP的定义 TCP即传输控制协议&#xff0c;全称为Transition Control Protocol&#xff0c;工作在传输层上。主要职责是负责主机之间进程到进程的通信&#xff0c;其次可以保证可靠性&#xff0c;不能保证安全性。 TCP会尽自己所能&#xff0c;尽量将数据…

K8S部署Java项目(Gitlab CI/CD自动化部署终极版)

天行健&#xff0c;君子以自强不息&#xff1b;地势坤&#xff0c;君子以厚德载物。 每个人都有惰性&#xff0c;但不断学习是好好生活的根本&#xff0c;共勉&#xff01; 文章均为学习整理笔记&#xff0c;分享记录为主&#xff0c;如有错误请指正&#xff0c;共同学习进步。…

Android 水波纹扩散效果实现

人生只是一种体验&#xff0c;不必用来演绎完美。 效果图 View源码 package com.android.circlescalebar.view;import android.animation.Animator; import android.animation.AnimatorListenerAdapter; import android.animation.ObjectAnimator; import android.animation.…

当Vue项目启动后,通过IP地址方式在相同网络段的其他电脑上无法访问前端页面?

当Vue项目启动后&#xff0c;通过IP地址方式在相同网络段的其他电脑上无法访问前端页面&#xff0c;可能是由以下几个原因造成的&#xff1a; 服务监听地址&#xff1a;默认情况下&#xff0c;许多开发服务器&#xff08;如Vue CLI的vue-cli-service serve&#xff09;只监听lo…

数字孪生的技术开发平台

数字孪生的开发平台可以基于各种软件和硬件工具来实现&#xff0c;这些平台提供了丰富的功能和工具&#xff0c;帮助开发人员构建、部署和管理数字孪生系统&#xff0c;根据具体的需求和技术要求&#xff0c;开发人员可以选择合适的平台进行开发工作。以下列举了一些常见的数字…

Transformer视频理解学习的笔记

今天复习了Transformer,ViT, 学了SwinTransformer, 还有观看了B站视频理解沐神系列串讲视频上&#xff08;24.2.26未看完,明天接着看&#xff09; 这里面更多论文见&#xff1a;https://github.com/mli/paper-reading/ B站视频理解沐神系列串讲视频下&#xff08;明天接着看&a…

【mysql】 1819 - Your password does not satisfy the current policy requirements

创建mysql账户密码时候提示&#xff1a; 1819 - Your password does not satisfy the current policy requirements 1819-您的密码不符合当前策略要求 下面是执行的sql DROP DATABASE IF EXISTS company;CREATE DATABASE company CHARACTER SET utf8mb4 ;grant all on com…

蓝桥杯备战刷题one(自用)

1.被污染的支票 #include <iostream> #include <vector> #include <map> #include <algorithm> using namespace std; int main() {int n;cin>>n;vector<int>L;map<int,int>mp;bool ok0;int num;for(int i1;i<n;i){cin>>nu…

【服务器数据恢复】ext3文件系统下硬盘坏道掉线的数据恢复案例

服务器数据恢复环境&#xff1a; 一台IBM某型号服务器上有16块FC硬盘组建RAID阵列。上层linux操作系统&#xff0c;ext3文件系统&#xff0c;部署有oracle数据库。 服务器故障&检测&#xff1a; 服务器上跑的业务突然崩溃&#xff0c;管理员发现服务器上有2块磁盘的指示灯…

OSI参考模型和TCP/IP网络参考模型

1、OSI参考模型 1.1 产生背景 为了解决网络之间的兼容性问题,实现网络设备间的相互通讯,国际标准化组织ISO于1984年提出了OSIRM(Open System Interconnection Reference Model,开放系统互连参考模型)。OSI参考模型很快成为计算机网络通信的基础模型。由于种种原因,并没有…

[极客大挑战 2019]LoveSQL1 题目分析与详解

一、题目简介&#xff1a; 二、通关思路&#xff1a; 1、首先查看页面源代码&#xff1a; 我们发现可以使用工具sqlmap来拿到flag&#xff0c;我们先尝试手动注入。 2、 打开靶机&#xff0c;映入眼帘的是登录界面&#xff0c;首先尝试万能密码能否破解。 username: 1 or 11…

Unity Shader - sahder变体剔除

文章目录 吐槽优化方案 - 目前最靠谱的方式shadercsharp 吐槽 我之所以单独写这边文章&#xff0c;是因为之前写的一篇&#xff1a; Unity Shader - Built-in管线下优化变体&#xff0c;编辑后&#xff0c;无法保存&#xff0c;一直提示&#xff1a;操作超时。 等了差不多 3…

StarRocks实战——多维分析场景与落地实践

目录 一、OLAP 系统历史背景 1.1 历史背景与痛点 1.2 组件诉求 二、StarRocks 的特点和优势 2.1 极致的查询性能 2.2 丰富的导入方式 2.3 StarRocks 的优势特点 三、多维分析的运用场景 3.1 实时计算场景 / 家长监控中心 3.2 实时更新模型选择 3.2.1 更新模型UNIQU…

微服务-实用篇

微服务-实用篇 一、微服务治理1.微服务远程调用2.Eureka注册中心Eureka的作用&#xff1a;搭建EurekaServer服务Client服务注册服务发现Ribbon负载均衡策略配置Ribbon配置饥饿加载 3.nacos注册中心使用nacos注册中心服务nacos区域负载均衡nacos环境隔离-namespaceNacos和Eureka…

线程分离属性、线程互斥、死锁、信号量——进程与线程——day11

今天主要学习了线程分离属性、线程互斥、死锁、信号量 线程分离属性&#xff1a;主要是让线程结束后&#xff0c;自动回收线程空间 pthread_attr_initint pthread_attr_init(pthread_attr_t *attr);功能:线程属性初始化pthread_attr_destroyint pthread_attr_destroy(pthread…

k8s(5)

目录 使用Kubeadm安装k8s集群&#xff1a; 初始化操作&#xff1a; 每台主从节点&#xff1a; 升级内核&#xff1a; 所有节点安装docker &#xff1a; 所有节点安装kubeadm&#xff0c;kubelet和kubectl&#xff1a; 修改了 kubeadm-config.yaml&#xff0c;将其传输给…

Redis 16种妙用

1、缓存 2、数据共享分布式 3、分布式锁 4、全局ID 5、计数器 6、限流 7、位统计 8、购物车 9、用户消息时间线timeline 10、消息队列 11、抽奖 12、点赞、签到、打卡 13、商品标签 14、商品筛选 15、用户关注、推荐模型 16、排行榜 1、缓存 String类型 例如&#xff1a;热点…

Magento2常见表的作用

1.sales_sequence_profile 更改订单号或者发票号的前缀及最大值

猫头虎分享已解决Bug || 网络连接问题:NetworkError: Failed to fetch

博主猫头虎的技术世界 &#x1f31f; 欢迎来到猫头虎的博客 — 探索技术的无限可能&#xff01; 专栏链接&#xff1a; &#x1f517; 精选专栏&#xff1a; 《面试题大全》 — 面试准备的宝典&#xff01;《IDEA开发秘籍》 — 提升你的IDEA技能&#xff01;《100天精通鸿蒙》 …