基于深度学习的故障诊断GAN之生成对抗网络

图片

这个图是作者当时研究CGAN画的,从代码流程来看,GAN和CGAN是一样的,两者的区别在于,GAN输入噪声和原始图片,CGAN输入噪声、条件信息(标签)和原始图片,大家可以仔细研究代码!
在这里插入图片描述

代码来源(GitHub)

https://github.com/eriklindernoren/PyTorch-GAN

代码全文

import argparse
import os
import numpy as np
import math

import torchvision.transforms as transforms
from torchvision.utils import save_image

from torch.utils.data import DataLoader
from torchvision import datasets
from torch.autograd import Variable

import torch.nn as nn
import torch.nn.functional as F
import torch

os.makedirs("images", exist_ok=True)

parser = argparse.ArgumentParser()
parser.add_argument("--n_epochs", type=int, default=200, help="number of epochs of training")
parser.add_argument("--batch_size", type=int, default=64, help="size of the batches")
parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate")
parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient")
parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient")
parser.add_argument("--n_cpu", type=int, default=8, help="number of cpu threads to use during batch generation")
parser.add_argument("--latent_dim", type=int, default=100, help="dimensionality of the latent space")
parser.add_argument("--img_size", type=int, default=28, help="size of each image dimension")
parser.add_argument("--channels", type=int, default=1, help="number of image channels")
parser.add_argument("--sample_interval", type=int, default=400, help="interval betwen image samples")
opt = parser.parse_args()
print(opt)

img_shape = (opt.channels, opt.img_size, opt.img_size)

cuda = True if torch.cuda.is_available() else False


class Generator(nn.Module):
    def __init__(self):
        super(Generator, self).__init__()

        def block(in_feat, out_feat, normalize=True):
            layers = [nn.Linear(in_feat, out_feat)]
            if normalize:
                layers.append(nn.BatchNorm1d(out_feat, 0.8))
            layers.append(nn.LeakyReLU(0.2, inplace=True))
            return layers

        self.model = nn.Sequential(
            *block(opt.latent_dim, 128, normalize=False),
            *block(128, 256),
            *block(256, 512),
            *block(512, 1024),
            nn.Linear(1024, int(np.prod(img_shape))),
            nn.Tanh()
        )

    def forward(self, z):
        img = self.model(z)
        img = img.view(img.size(0), *img_shape)
        return img


class Discriminator(nn.Module):
    def __init__(self):
        super(Discriminator, self).__init__()

        self.model = nn.Sequential(
            nn.Linear(int(np.prod(img_shape)), 512),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Linear(512, 256),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Linear(256, 1),
            nn.Sigmoid(),
        )

    def forward(self, img):
        img_flat = img.view(img.size(0), -1)
        validity = self.model(img_flat)

        return validity


# Loss function
adversarial_loss = torch.nn.BCELoss()

# Initialize generator and discriminator
generator = Generator()
discriminator = Discriminator()

if cuda:
    generator.cuda()
    discriminator.cuda()
    adversarial_loss.cuda()

# Configure data loader
os.makedirs("../../data/mnist", exist_ok=True)
dataloader = torch.utils.data.DataLoader(
    datasets.MNIST(
        "../../data/mnist",
        train=True,
        download=True,
        transform=transforms.Compose(
            [transforms.Resize(opt.img_size), transforms.ToTensor(), transforms.Normalize([0.5], [0.5])]
        ),
    ),
    batch_size=opt.batch_size,
    shuffle=True,
)

# Optimizers
optimizer_G = torch.optim.Adam(generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))

Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor

# ----------
#  Training
# ----------

for epoch in range(opt.n_epochs):
    for i, (imgs, _) in enumerate(dataloader):

        # Adversarial ground truths
        valid = Variable(Tensor(imgs.size(0), 1).fill_(1.0), requires_grad=False)
        fake = Variable(Tensor(imgs.size(0), 1).fill_(0.0), requires_grad=False)

        # Configure input
        real_imgs = Variable(imgs.type(Tensor))

        # -----------------
        #  Train Generator
        # -----------------

        optimizer_G.zero_grad()

        # Sample noise as generator input
        z = Variable(Tensor(np.random.normal(0, 1, (imgs.shape[0], opt.latent_dim))))

        # Generate a batch of images
        gen_imgs = generator(z)

        # Loss measures generator's ability to fool the discriminator
        g_loss = adversarial_loss(discriminator(gen_imgs), valid)

        g_loss.backward()
        optimizer_G.step()

        # ---------------------
        #  Train Discriminator
        # ---------------------

        optimizer_D.zero_grad()

        # Measure discriminator's ability to classify real from generated samples
        real_loss = adversarial_loss(discriminator(real_imgs), valid)
        fake_loss = adversarial_loss(discriminator(gen_imgs.detach()), fake)
        d_loss = (real_loss + fake_loss) / 2

        d_loss.backward()
        optimizer_D.step()

        print(
            "[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]"
            % (epoch, opt.n_epochs, i, len(dataloader), d_loss.item(), g_loss.item())
        )

        batches_done = epoch * len(dataloader) + i
        if batches_done % opt.sample_interval == 0:
            save_image(gen_imgs.data[:25], "images/%d.png" % batches_done, nrow=5, normalize=True)

结果分析

本代码采用MNIST手写数字数据集(训练集60000个,测试集10000个,本例中采用巡训练集数据),可实现数据集自动下载,epoch次数为200,单个epoch中有938个batch,batch_size为64,每间隔400个batch输出一个生成器学习的图片,生成器迭代1次、5万次、10万次、15万次等。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/412826.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

P0故障应对策略之:为什么P0故障难以排查

与大模型探讨P0故障 P0级故障,作为系统中最严重的故障,它们的发生往往带来灾难性的后果和巨大的损失。同时,这类故障的排查与修复也往往复杂而棘手,对整个团队的经验、综合能力、应急处置流程都是巨大的挑战。 排查P0级故障的过程…

简单实现文字滚动效果-CSS版本

先看看效果 话不多说直接上代码 <template><div class"main"><div class"scroll-region"><div class"swiper-scroll-content"><span class"list-btn" v-for"(item, index) in overviewList" :…

IDEA中 @SpringBootApplication 多个注解无法引入依赖

终于解决了&#xff01;&#xff01;&#xff01; cd到报红项目的根目录&#xff0c;然后输入mvn idea:idea就行了。

新的一年,如何优化企业库存管理?

随着社会的发展和经济的不断增长&#xff0c;库存管理成为了企业运营中非常重要的一环。库存作为企业的资产之一&#xff0c;直接影响着企业的盈利能力和竞争优势。因此&#xff0c;对企业库存进行科学的分析和管理&#xff0c;成为了确保企业持续稳定发展的必要手段之一。企业…

为什么深度学习的效果更好?

导 读 深度学习是机器学习的一个子集&#xff0c;已成为人工智能领域的一项变革性技术&#xff0c;在从计算机视觉、自然语言处理到自动驾驶汽车等广泛的应用中取得了显着的成功。 深度学习的有效性并非偶然&#xff0c;而是植根于几个基本原则和进步&#xff0c;这些原则和进…

spring框架Bean的作用域?对需要保持会话状态的bean应使用prototype作用域?为啥?

当一个bean被定义为"prototype"作用域时&#xff0c;每次请求该bean时都会创建一个新的实例&#xff0c;而不是像"singleton"作用域那样共享同一个实例。 对于需要保持会话状态的bean&#xff0c;如果使用"singleton"作用域&#xff0c;会导致所…

Dubbo知识点大全

“ 分布式应用场景有高并发,高可扩展和高性能的要求。还涉及到,序列化/反序列化,网络,多线程以及设计模式的问题。幸好 Dubbo 框架将上述知识进行了封装,让程序员能够把注意力放到业务上。 概念和架构 Provider:暴露服务的服务提供方Consumer:调用远程服务消费方Regist…

Linux系统---nginx(1)服务

目录 一.Nginx概述 1.定义 2.Nginx模块作用 &#xff08;1&#xff09;main模块 &#xff08;2&#xff09;stream服务模块 &#xff08;3&#xff09;邮件服务模块 &#xff08;4&#xff09;第三方模块 &#xff08;5&#xff09;events模块 &#xff08;6&#xff0…

智慧公厕的目的和意义是什么?

智慧公厕是近年来城市建设中的一项重要举措&#xff0c;其目的在于实现公共厕所的智慧化管理&#xff0c;为市民群众提供更好的服务体验&#xff0c;助力智慧城市和数字环卫的发展&#xff0c;提升社会公共卫生服务水平。 与此同时&#xff0c;智能公厕也具有重要的意义&#x…

泽攸科技JS系列高精度台阶仪在半导体领域的应用

泽攸科技JS系列高精度台阶仪是一款先进的自主研发的国产台阶仪&#xff0c;采用了先进的扫描探针技术。通过扫描探针在样品表面上进行微观测量&#xff0c;台阶仪能够准确获取表面形貌信息。其工作原理基于探针与样品表面的相互作用力&#xff0c;通过测量探针的微小位移&#…

Jessibuca 插件播放直播流视频

jessibuca官网&#xff1a;http://jessibuca.monibuca.com/player.html git地址&#xff1a;https://gitee.com/huangz2350_admin/jessibuca#https://gitee.com/link?targethttp%3A%2F%2Fjessibuca.monibuca.com%2F 项目需要的文件 1.播放组件 <template ><div i…

汽车改装轮毂需要备案吗?哪些不需要更换轮毂?

如今&#xff0c;改装轮毂已经成为很多汽车爱好者的必备选择。 在改装轮毂之前&#xff0c;还有一些问题需要先弄清楚。 网友最常问的问题是&#xff1a;改装轮毂需要注册吗&#xff1f; 今天综艺猴就和朋友们聊聊这个问题。 请问还有哪些改造项目需要备案&#xff1f; 哪些是…

【Unity】如何从现有项目中抽取好用的资源

【背景】 在做Unity项目的过程中引入各种各样的Package&#xff0c;有的Package很大&#xff0c;但是觉得非常有用的可能只是几个Prefab或者Material等。如果直接拷贝想要的Prefab和Material&#xff0c;又需要自己确认所有有依赖关系的资源。 如果能将所有日常经受项目中自己…

电子病历系统

电子病历系统 获取源码——》公主号&#xff1a;计算机专业毕设大全

早产儿视网膜病变分期,自动化+半监督(无需大量医生标注数据)

早产儿视网膜病变 ROP 分期 提出背景解法框架解法步骤一致性正则化算法构建思路 实验 提出背景 论文&#xff1a;https://www.cell.com/action/showPdf?piiS2589-0042%2823%2902593-2 早产儿视网膜病变&#xff08;ROP&#xff09;目前是全球婴儿失明的主要原因之一。 这是…

有效电子邮件地址的最大长度是多少个符号?

有效电子邮件地址怎么填&#xff1f;如何校验邮件地址的有效性&#xff1f; 电子邮件已经成为我们日常生活和工作中不可或缺的一部分。有效电子邮件地址的正确性对于确保信息传递的准确和及时至关重要。那么&#xff0c;你可能会好奇&#xff0c;有效电子邮件地址的最大长度是…

数据结构知识点总结-线性表(3)-双向链表定义、循环单链表、、循环双向链表、静态链表、顺序表与链表的比较

双向链表定义 单链表结点中只有一个指向其后继的指针&#xff0c;这使得单链表只能从头结点依次顺序地向后遍历。若要访问某个结点的前驱结点&#xff08;插入、删除操作时&#xff09;&#xff0c;只能从头开始遍历&#xff0c;访问后继结点的时间复杂度为 O(1) &#xff0c; …

Python采集二手车数据信息实现数据可视化展示

嗨喽~大家好呀&#xff0c;这里是魔王呐 ❤ ~! python更多源码/资料/解答/教程等 点击此处跳转文末名片免费获取 环境使用: Python 3.10 Pycharm 模块使用: requests >>> pip install requests csv 数据可视化: pandas >>> pip install pandas pyech…

【前后端的那些事】文件上传组件封装

文章目录 效果前端代码后端代码组件封装 效果 前端代码 /views/file/file.vue <template><el-row><el-uploadv-model:file-list"fileList"class"upload-demo"multiple:auto-upload"false":on-preview"handlePreview"…

与Sora一样能生成视频、图像,还能一次解读100万数据!

大语言模型&#xff08;LLM&#xff09;在生成文本内容方面非常强&#xff0c;但在理解、生成视频、图像等方面略显不足。尤其是在Sora一夜爆红之后&#xff0c;让人们意识到未来主流模型一定是文本音频图像视频的多模态生成、理解功能。 因此&#xff0c;加州大学伯克利分校的…