【机器学习】特征工程之特征选择

在这里插入图片描述

🎈个人主页:豌豆射手^
🎉欢迎 👍点赞✍评论⭐收藏
🤗收录专栏:机器学习
🤝希望本文对您有所裨益,如有不足之处,欢迎在评论区提出指正,让我们共同学习、交流进步!

【机器学习】特征工程之特征选择

  • 一 初步了解特征选择
    • 1.1 概念
    • 1.2 类比
  • 二 特征选择的优点
    • 2.1 降低维度:
    • 2.2 提高模型性能:
    • 2.3 加快训练速度:
    • 2.4 避免数据过拟合:
    • 2.5 提高模型解释性:
    • 2.6 降低数据采集成本:
  • 三 特征选择常用方法
    • 3.1 过滤式特征选择(Filter Methods):
    • 3.2 包裹式特征选择(Wrapper Methods):
    • 3.3 嵌入式特征选择(Embedded Methods):
  • 四 特征选择步骤
  • 总结

引言:

在机器学习中,特征工程是构建高性能预测模型的关键步骤之一。

而特征选择作为特征工程的重要组成部分,直接影响着模型的性能和泛化能力。特征选择是指从原始特征中选择最相关和最具代表性的特征,以用于模型训练和预测。

通过特征选择,我们可以降低维度、提高模型性能、加快训练速度、避免过拟合、提高模型解释性以及降低数据采集成本等。

本文将介绍特征选择的概念、优点,以及常用的特征选择方法和实施步骤,帮助读者更好地理解和应用特征选择技术,从而提升机器学习模型的效果和可解释性。

在这里插入图片描述

一 初步了解特征选择

1.1 概念

特征选择(Feature Selection)指的是从原始数据特征中选择出最具代表性、最有意义的特征子集的过程。

特征子集
特征子集是指从原始数据集中选取的部分特征集合。在机器学习和数据挖掘任务中,原始数据集通常包含多个特征(也称为属性、变量或维度),而特征子集是从这些特征中选择出来的一个子集,用于模型训练和预测。

在机器学习和数据挖掘中,特征选择是一个重要的步骤,其目的是减少模型的复杂度、提高模型的泛化能力、加快训练速度以及提高模型解释性。

在现实世界的数据中,常常会包含大量的特征,但并非所有特征都对模型的性能有帮助,甚至有些特征可能是冗余或者噪声的。

1.2 类比

假设你是一位摄影师,你想拍摄一幅风景照片。你的相机拥有各种调节选项,比如光圈、快门速度、ISO 等等。在拍摄之前,你需要考虑如何选择这些参数来获得最佳的照片。

光圈:

光圈控制着进入相机的光线量。选择合适的光圈大小可以决定照片的景深,影响焦点范围和背景模糊效果。

在特征选择中,光圈可以类比为数据集中的某些特征,它们可能在模型训练中起着重要的作用。

快门速度:

快门速度决定了曝光时间的长短,影响照片中移动物体的清晰度以及光线的捕捉效果。

在特征选择中,快门速度可以比喻为数据集中的另一组特征,它们可能与数据的动态性或变化频率有关。

ISO:

ISO设置影响照片的亮度和噪点水平。较高的ISO值可以增加照片的亮度,但也可能引入更多的噪点。

在特征选择中,ISO可以代表数据集中的一些属性,它们可能在模型训练中引入噪音或不必要的复杂性。

在拍摄照片之前,你需要根据场景和拍摄要求选择合适的光圈、快门速度和ISO值。

类似地,在特征选择中,你需要根据数据集的特性和模型的需求,选择最具代表性、最相关的特征子集,以提高模型的性能、泛化能力和解释性。

就像调整相机参数一样,在特征选择中找到合适的特征子集可以帮助模型更好地理解数据,减少过拟合,提高预测准确性。

二 特征选择的优点

特征选择在机器学习特征工程中扮演着至关重要的角色,其优点包括:

2.1 降低维度:

在现实世界的数据中,特征的数量可能非常庞大,而很多特征可能是无关或冗余的。

通过特征选择,可以将数据集中的维度降低到最相关或最具信息量的特征,从而减少了数据集的复杂度和计算成本。

2.2 提高模型性能:

去除无关或冗余的特征可以减少模型学习的噪音和干扰,从而提高模型的泛化能力和预测性能。

特征选择有助于使模型更加简单,减少过拟合的风险,提高模型的可解释性。

2.3 加快训练速度:

通过减少特征数量,特征选择可以加快模型的训练速度。

由于需要处理的特征更少,模型可以更快地收敛,节省训练时间和计算资源。

2.4 避免数据过拟合:

过多的特征可能导致模型过度拟合训练数据,从而降低了模型在新数据上的泛化能力。

通过特征选择,可以减少过拟合的风险,使模型更好地适应新的、未见过的数据。

2.5 提高模型解释性:

精心选择的特征集合可以提供更好的模型解释性。

具有高预测能力的特征通常与问题领域相关,因此通过特征选择选择的特征可以帮助解释模型的预测结果,并为业务决策提供更多洞见。

2.6 降低数据采集成本:

在某些情况下,采集和处理特征数据可能会非常昂贵,例如传感器数据或基因组数据。

通过特征选择,可以减少需要采集和处理的数据量,从而降低了数据采集和处理的成本。

综上所述,特征选择在机器学习特征工程中具有诸多优点,能够提高模型性能、加快训练速度、提高模型解释性,并能够有效降低数据维度和成本,是构建高效、可解释的机器学习模型的重要步骤之一。

三 特征选择常用方法

特征选择的方法通常可以分为三大类:

3.1 过滤式特征选择(Filter Methods):

这种方法是在特征选择和模型训练之前独立进行的。它通过某种度量方式对特征进行评估和排序,然后选择排名靠前的特征作为最终的特征集。

常用的过滤方法有基于方差、相关系数、信息增益等。

3.2 包裹式特征选择(Wrapper Methods):

这种方法直接使用特定的机器学习算法来评估特征子集的性能。它将特征选择看作是一个搜索优化问题,通过迭代地训练模型并评估性能,选择最优的特征子集。

常见的包裹式方法有递归特征消除(Recursive Feature Elimination, RFE)、向前选择(Forward Selection)等。

3.3 嵌入式特征选择(Embedded Methods):

这种方法将特征选择嵌入到模型的训练过程中。在模型训练过程中,通过加入正则化项(如L1正则化)或者利用模型自身的特征重要性来选择特征。

常见的嵌入式方法有Lasso回归、决策树等。

在接下来的文章里,我将详细介绍这三种特征选择的方法。

四 特征选择步骤

特征选择是机器学习特征工程中的关键步骤,其目的是从原始特征集中选择最相关、最具信息量的特征,以提高模型性能。

以下是一般的特征选择步骤:

1 理解问题和数据:

在进行特征选择之前,深入了解问题领域和数据集是至关重要的。

了解特征的含义、数据的分布和问题的背景有助于更好地选择合适的特征。

2 收集数据:

获取原始数据集,包括特征和目标变量。

确保数据集的质量,处理缺失值、异常值等问题。

3 探索性数据分析 (EDA):

对数据进行初步的探索性分析,了解特征之间的相关性、分布情况以及与目标变量之间的关系。

这有助于识别一些初步的重要特征。

4 特征预处理:

对原始特征进行预处理,包括缩放、标准化、处理缺失值、处理分类特征等。

确保数据在进入模型之前是可用的和可靠的。

5 构建特征:

利用领域知识和创造性地构建新的特征,以增强模型的表现。

这可能涉及到特征的组合、变换或生成新的特征。

6 特征选择方法选择:

选择适当的特征选择方法,常见的方法见上一节。

7 特征选择实施:

根据选定的方法,在训练集上应用特征选择

。这可能涉及到计算特征的得分、训练模型进行特征排序等。

8 模型评估:

在经过特征选择的特征集上训练模型,并使用验证集或交叉验证进行评估。

观察模型性能是否有所改善。

9 调整和迭代:

根据模型性能进行调整,可能需要尝试不同的特征选择方法、调整超参数或重新考虑特征工程的步骤。

10 最终模型:

选择最终的特征集合,训练模型,并在测试集上进行最终评估。

确保模型具有良好的泛化能力。

特征选择是一个迭代的过程,可能需要多次尝试和调整,以找到最适合特定问题的特征集。在整个特征选择的过程中,对于每个步骤的决策都应该基于对问题和数据的深刻理解。

总结

特征选择作为机器学习特征工程中的关键步骤,对于提升模型性能和泛化能力具有重要作用。

通过本文的介绍,我们了解了特征选择的概念和重要性,以及其在降低维度、提高模型性能、加快训练速度、避免过拟合、提高模型解释性和降低数据采集成本等方面的优点。

此外,我们还初步学习了特征选择的常用方法,包括过滤式特征选择、包裹式特征选择和嵌入式特征选择,并了解了特征选择的实施步骤。

在后面的文章里,我也将会详细地介绍特征选择的这是三种常用方法。

综上所述,特征选择在机器学习中扮演着至关重要的角色,帮助我们从海量特征中筛选出最具信息量和最相关的特征,为模型训练和预测提供更可靠的支持。

这篇文章到这里就结束了

谢谢大家的阅读!

如果觉得这篇博客对你有用的话,别忘记三连哦。

我是甜美的江,让我们我们下次再见

在这里插入图片描述

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/407901.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【ubuntu】永久修改主机名

文章目录 1. 问题描述2. 解决方案 1. 问题描述 主机名过长(后面的部分) 2. 解决方案 查看主机名详情 hostnamectl修改指定主机名 hostnamectl set-hostname ubuntu2204 --static登出重进即可

基于java+springboot+vue实现的美食信息推荐系统(文末源码+Lw)23-170

1 摘 要 使用旧方法对美食信息推荐系统的信息进行系统化管理已经不再让人们信赖了,把现在的网络信息技术运用在美食信息推荐系统的管理上面可以解决许多信息管理上面的难题,比如处理数据时间很长,数据存在错误不能及时纠正等问题。这次开发…

虚拟机安装Docker装载Mysql

目录 1.安装docker 2. docker中安装mysql 1.选择mysql镜像 2.查看镜像 3.启动mysql 4.修改配置 5.进入容器查看配置: 6.设置启动docker时,即运行mysql 1.安装docker SSH 登录到虚拟机: 使用MobaXterm或其他SSH客户端连接到虚拟机: ss…

前后端延迟怎么解决

当今互联网应用的发展越来越迅猛,用户对于网站或应用的性能要求也越来越高。其中一个重要方面就是前后端延迟的解决,也就是减少前端与后端之间的通信时间延迟,提高用户体验。本文将详细介绍如何解决前后端延迟的问题。 网络延迟 数据在网络…

JavaSec 基础之 XXE

文章目录 XMLReaderSAXReaderSAXBuilderDocumentBuilderUnmarshaller**SAXParserFactory**XMLReaderFactoryDigester总结 XMLReader public String XMLReader(RequestBody String content) {try {XMLReader xmlReader XMLReaderFactory.createXMLReader();// 修复&#xff1a…

QoS 服务质量

服务质量 QoS (Quality of Service) 服务质量可用若干基本性能指标来描述,包括:可用性、差错率、响应时间、吞吐量、分组丢失率、连接建立时间、故障检测和改正时间等。 服务提供者可向其用户保证某一种等级的服务质量。 服务性能的总效果,…

Servlet(2)

文章目录 更方便的部署方式安装 Smart Tomcat 插件配置 Smart Tomcat 插件 访问出错怎么办出现 404出现 405出现 500出现 "空白页面"出现 "无法访问此网站" 小结 更方便的部署方式 手动拷贝 war 包到 Tomcat 的过程比较麻烦. 我们还有更方便的办法. 此处我…

算法——排序算法

目录 1、冒泡排序 2、插入排序 3、选择排序 4、归并排序 5、快速排序 6、堆排序 7、计数排序 8、桶排序 9、基数排序 常见的排序算法包括: 冒泡排序(Bubble Sort)插入排序(Insertion Sort)选择排序(Se…

2023年海南房地产经纪机构备案需要具备哪些条件?

房地产业在海南占有非常重要的地位。 同样,海南也有很多房地产中介机构。 那么,2023年海南房产中介登记证如何办理呢? 海南房产中介注册需要什么条件? 办理海南房产中介机构登记需要提交哪些材料? ……今天博宇会计小编…

神经网络系列---归一化

文章目录 归一化批量归一化预测阶段 测试阶段γ和β(注意)举例 层归一化前向传播反向传播 归一化 批量归一化 (Batch Normalization)在训练过程中的数学公式可以概括如下: 给定一个小批量数据 B { x 1 , x 2 , … …

读人工不智能:计算机如何误解世界笔记02_Hello,world

1. Hello,world 1.1. “Hello,world”是布赖恩克尼汉和丹尼斯里奇于1978年出版的经典著作《C程序设计语言》中的第一个编程项目 1.2. 贝尔实验室可以说是现代计算机科学界中的智库,地位好比巧克力界的好时巧克力 1.3. 计算机科学界的大量创…

【大厂AI课学习笔记NO.53】2.3深度学习开发任务实例(6)数据采集

这个系列写了53期了,很多朋友收藏,看来还是觉得有用。 后续我会把相关的内容,再次整理,做成一个人工智能专辑。 今天学习到了数据采集的环节。 这里有个问题,数据准备包括什么,还记得吗? 数…

Linux之ACL权限chmod命令

一. chmod命令 chmod命令来自英文词组change mode的缩写,其功能是改变文件或目录权限的命令。默认只有文件的所有者和管理员可以设置文件权限,普通用户只能管理自己文件的权限属性。 设置权限时可以使用数字法,亦可使用字母表达式&#xff0…

2.5G/5G/10G高速率网络变压器(网络隔离变压器)产品介绍(1)

Hqst华轩盛(石门盈盛)电子导读:高速率/2.5G 的带POE插件(DIP)款千兆双口网络变压器2G54801DP特点 一 ﹑2.5G高速率网络变压器(网络隔离变压器):2G54801DP外观与尺寸 2G54801DP这颗产品尺寸为:长…

Vue.js+SpringBoot开发超市商品管理系统

目录 一、摘要1.1 简介1.2 项目录屏 二、研究内容2.1 数据中心模块2.2 超市区域模块2.3 超市货架模块2.4 商品类型模块2.5 商品档案模块 三、系统设计3.1 用例图3.2 时序图3.3 类图3.4 E-R图 四、系统实现4.1 登录4.2 注册4.3 主页4.4 超市区域管理4.5 超市货架管理4.6 商品类型…

C语言——结构体——(第21篇)

坚持就是胜利 文章目录 一、结构体类型的声明1、结构的基础知识2、结构的声明3、结构成员的类型 二、结构体变量的定义和初始化结构体中包含结构体 三、结构体成员访问问题一:t.name "张三",对吗?问题二:set_Stu(s);应…

【深度学习目标检测】十九、基于深度学习的芒果计数分割系统-含数据集、GUI和源码(python,yolov8)

使用深度学习算法检测芒果具有显著的优势和应用价值。以下是几个主要原因: 特征学习的能力:深度学习,特别是卷积神经网络(CNN),能够从大量的芒果图像中自动学习和提取特征。这些特征可能是传统方法难以手动…

数学建模资料分享

1. 往年各赛题的优秀论文 可以用来参考一下论文是怎么写的。参考论文的结构,格式,思路等等。 链接:https://pan.baidu.com/s/1WG2t4-x9MjtaSgkq4ue5AQ?pwdnlzx 提取码:nlzx --来自百度网盘超级会员V4的分享 2.论文模板 链接&a…

操作系统访问控制机制

使用访问控制技术,可以设置用户对系统资源的访问权限,即限定用户只能访问允许访问的资源。访问控制还可以通过设置文件的属性,来保护文件只能被读而不能被修改,或只允许核准的用户对其进行修改等。 1.1 保护域 把一个进程能对某…

记录一次xpclr检测中报错(“No permission to write in the specified directory: {0}“)

这里写自定义目录标题 报错修正思路:将 -O参数修改成为相对目录加文件名称格式。 报错 看到这个问题,一头雾水,没有写入权限。结果是程序问题。 修正思路:将 -O’参数修改成为相对目录加文件名称格式。 代码: