神经网络系列---归一化


文章目录

    • 归一化
      • 批量归一化
        • 预测阶段
      • 测试阶段
        • γ和β(注意)
        • 举例
      • 层归一化
        • 前向传播
        • 反向传播


归一化

批量归一化

在这里插入图片描述在这里插入图片描述在这里插入图片描述

(Batch Normalization)在训练过程中的数学公式可以概括如下:

给定一个小批量数据 B = { x 1 , x 2 , … , x m } B = \{x_1, x_2, \ldots, x_m\} B={x1,x2,,xm},其中 m m m 是批次的大小。

  1. 计算均值:计算小批量数据的均值。
    μ B = 1 m ∑ i = 1 m x i \mu_B = \frac{1}{m} \sum_{i=1}^{m} x_i μB=m1i=1mxi

  2. 计算方差:计算小批量数据的方差。
    σ B 2 = 1 m ∑ i = 1 m ( x i − μ B ) 2 \sigma_B^2 = \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_B)^2 σB2=m1i=1m(xiμB)2

  3. 归一化:使用均值和方差对小批量数据进行标准化。
    x ^ i = x i − μ B σ B 2 + ϵ \hat{x}_i = \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}} x^i=σB2+ϵ xiμB
    其中, ϵ \epsilon ϵ 是一个小的常数,用于确保分母不为零。

  4. 缩放和平移:使用可学习的参数伽玛 γ \gamma γ和贝塔 β \beta β来缩放和平移标准化的数据。
    y i = γ x ^ i + β y_i = \gamma \hat{x}_i + \beta yi=γx^i+β
    其中, γ \gamma γ β \beta β 是可学习的参数,用于调整归一化的缩放和平移。

这样做可以让模型有更大的灵活性,因为它可以学习到每个特征或通道应该如何被归一化。

预测阶段

在推断阶段,使用整个训练集的均值和方差(通常是移动平均)来替代小批量的均值和方差。这确保了网络在推断时的行为与训练时的行为更加一致。

在批量归一化中,移动平均均值和方差是在训练阶段计算并用于预测阶段的归一化过程。移动平均的计算通常使用指数移动平均(EMA)或其他平滑方法。下面是计算移动平均均值和方差的一般过程:

  1. 初始化:在训练开始时,初始化移动平均均值和方差为零或其他初始值。

  2. 计算当前批次的均值和方差:对于每个训练批次,计算该批次数据的均值和方差。

  3. 更新移动平均:使用当前批次的均值和方差以及之前的移动平均值来更新移动平均。通常,这可以通过下面的公式完成:

    移动平均均值 = m o m e n t u m × 移动平均均值 + ( 1 − m o m e n t u m ) × 当前批次均值 \text{移动平均均值} = momentum \times \text{移动平均均值} + (1 - momentum) \times \text{当前批次均值} 移动平均均值=momentum×移动平均均值+(1momentum)×当前批次均值
    移动平均方差 = m o m e n t u m × 移动平均方差 + ( 1 − m o m e n t u m ) × 当前批次方差 \text{移动平均方差} = momentum \times \text{移动平均方差} + (1 - momentum) \times \text{当前批次方差} 移动平均方差=momentum×移动平均方差+(1momentum)×当前批次方差

    其中, m o m e n t u m momentum momentum 是一个超参数,通常在 0 到 1 之间,通常设置为接近 1 的值(例如 0.9),决定了移动平均的平滑程度。较小的 m o m e n t u m momentum momentum 值会使移动平均更关注最近的批次,而较大的值则会使其更平滑。

  4. 使用当前mini-batch的均值和方差对数据进行归一化,并通过可学习的参数 γ γ γ β β β 进行缩放和偏移。

BN ( x i ) = γ ( x i − μ B σ B 2 + ϵ ) + β \text{BN}(x_i) = \gamma \left( \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}} \right) + \beta BN(xi)=γ(σB2+ϵ xiμB)+β

测试阶段

在测试阶段,使用训练期间计算的运行均值和方差进行归一化:

BN ( x i ) = γ ( x i − μ running σ running 2 + ϵ ) + β \text{BN}(x_i) = \gamma \left( \frac{x_i - \mu_{\text{running}}}{\sqrt{\sigma_{\text{running}}^2 + \epsilon}} \right) + \beta BN(xi)=γ(σrunning2+ϵ xiμrunning)+β

通过这种方式,批量归一化可以在测试阶段更稳定和准确地归一化数据。

γ和β(注意)

在批量归一化中, γ \gamma γ β \beta β 不是单一的数值,而是可以学习的参数向量。其维度与正在被归一化的数据的维度相同。这样可以确保每个特征有其自己的 γ \gamma γ β \beta β 参数,可以独立地进行缩放和偏移。

具体来说:

  • 在全连接层中,如果该层有 d d d 个神经元,那么 γ \gamma γ β \beta β 将是 d d d 维向量。
  • 在卷积层中,如果卷积层有 c c c 个通道,那么 γ \gamma γ β \beta β 将是 c c c 维向量,每个通道有一个 γ \gamma γ β \beta β 值。
举例

以下是按照10个样本,20个特征,计算移动平均方差的步骤:

  1. 初始化移动平均方差:在训练开始时,为每个特征初始化一个移动平均方差值。可以将其设置为零或其他初始值。你将得到一个具有20个元素的移动平均方差向量。

  2. 对于每个批次:对于每个训练批次,执行以下步骤:

    a. 计算当前批次的方差:按照之前的方法计算当前批次的方差。结果将是一个包含20个方差值的向量。

    b. 更新移动平均方差:使用以下公式来更新每个特征的移动平均方差:

移动平均方差 j = m o m e n t u m × 移动平均方差 j + ( 1 − m o m e n t u m ) × 当前批次方差 j \text{移动平均方差}_j = momentum \times \text{移动平均方差}_j + (1 - momentum) \times \text{当前批次方差}_j 移动平均方差j=momentum×移动平均方差j+(1momentum)×当前批次方差j

其中, m o m e n t u m momentum momentum 是一个超参数,通常在 0 到 1 之间,表示移动平均的平滑程度。这个过程会为每个特征更新移动平均方差。

  1. 预测时使用:在预测阶段,使用最终计算的移动平均方差向量来归一化新样本。

在批量归一化中,每个特征都有其自己的移动平均均值和移动平均方差。这些值是在训练过程中单独计算和跟踪的。

由于不同的特征可能具有不同的尺度和分布,因此为每个特征单独计算均值和方差是有意义的。这样可以确保在整个训练集中,每个特征都被归一化到具有相同的均值和方差,从而有助于提高训练的稳定性和效率。

层归一化

(Layer Normalization)是一种归一化技术,常用于深度学习模型中。下面我们来详细了解层归一化的前向传播和反向传播过程。

前向传播

给定输入向量 x x x,层归一化的前向传播包括以下步骤:

  1. 计算均值:计算输入 x x x 中所有特征的均值。
    μ = 1 d ∑ i = 1 d x i \mu = \frac{1}{d} \sum_{i=1}^{d} x_i μ=d1i=1dxi

  2. 计算方差:计算输入 x x x 中所有特征的方差。
    σ 2 = 1 d ∑ i = 1 d ( x i − μ ) 2 \sigma^2 = \frac{1}{d} \sum_{i=1}^{d} (x_i - \mu)^2 σ2=d1i=1d(xiμ)2

  3. 归一化:使用均值和方差对输入 x x x 进行标准化。
    x ^ i = x i − μ σ 2 + ϵ \hat{x}_i = \frac{x_i - \mu}{\sqrt{\sigma^2 + \epsilon}} x^i=σ2+ϵ xiμ

  4. 缩放和平移:使用可学习的参数伽玛 γ \gamma γ和贝塔 β \beta β来缩放和平移标准化的数据。
    y i = γ x ^ i + β y_i = \gamma \hat{x}_i + \beta yi=γx^i+β

反向传播

反向传播需要计算损失函数 L L L 对输入 x x x、伽玛 γ \gamma γ和贝塔 β \beta β的偏导数。以下是相关的偏导数计算:

  1. 对伽玛和贝塔的偏导数
    ∂ L ∂ γ = ∑ i = 1 d ∂ L ∂ y i x ^ i , ∂ L ∂ β = ∑ i = 1 d ∂ L ∂ y i \frac{\partial L}{\partial \gamma} = \sum_{i=1}^{d} \frac{\partial L}{\partial y_i} \hat{x}_i, \quad \frac{\partial L}{\partial \beta} = \sum_{i=1}^{d} \frac{\partial L}{\partial y_i} γL=i=1dyiLx^i,βL=i=1dyiL

  2. 对归一化输入的偏导数
    ∂ L ∂ x ^ i = ∂ L ∂ y i γ \frac{\partial L}{\partial \hat{x}_i} = \frac{\partial L}{\partial y_i} \gamma x^iL=yiLγ

  3. 对方差的偏导数
    ∂ L ∂ σ 2 = 1 2 ∑ i = 1 d ∂ L ∂ x ^ i 1 σ 2 + ϵ ( x i − μ ) \frac{\partial L}{\partial \sigma^2} = \frac{1}{2} \sum_{i=1}^{d} \frac{\partial L}{\partial \hat{x}_i} \frac{1}{\sqrt{\sigma^2 + \epsilon}} (x_i - \mu) σ2L=21i=1dx^iLσ2+ϵ 1(xiμ)

  4. 对均值的偏导数
    ∂ L ∂ μ = ∑ i = 1 d ∂ L ∂ x ^ i − 1 σ 2 + ϵ − 2 d ∂ L ∂ σ 2 ( μ − x i ) \frac{\partial L}{\partial \mu} = \sum_{i=1}^{d} \frac{\partial L}{\partial \hat{x}_i} \frac{-1}{\sqrt{\sigma^2 + \epsilon}} - \frac{2}{d} \frac{\partial L}{\partial \sigma^2} (\mu - x_i) μL=i=1dx^iLσ2+ϵ 1d2σ2L(μxi)

  5. 对输入的偏导数
    ∂ L ∂ x i = ∂ L ∂ x ^ i 1 σ 2 + ϵ + 2 d ∂ L ∂ σ 2 ( x i − μ ) + 1 d ∂ L ∂ μ \frac{\partial L}{\partial x_i} = \frac{\partial L}{\partial \hat{x}_i} \frac{1}{\sqrt{\sigma^2 + \epsilon}} + \frac{2}{d} \frac{\partial L}{\partial \sigma^2} (x_i - \mu) + \frac{1}{d} \frac{\partial L}{\partial \mu} xiL=x^iLσ2+ϵ 1+d2σ2L(xiμ)+d1μL

这些偏导数可以通过链式法则和上述前向传播步骤计算,从而实现层归一化的反向传播。这样就可以在训练过程中更新模型参数,并通过梯度下降或其他优化算法进行优化。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/407883.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

读人工不智能:计算机如何误解世界笔记02_Hello,world

1. Hello,world 1.1. “Hello,world”是布赖恩克尼汉和丹尼斯里奇于1978年出版的经典著作《C程序设计语言》中的第一个编程项目 1.2. 贝尔实验室可以说是现代计算机科学界中的智库,地位好比巧克力界的好时巧克力 1.3. 计算机科学界的大量创…

【大厂AI课学习笔记NO.53】2.3深度学习开发任务实例(6)数据采集

这个系列写了53期了,很多朋友收藏,看来还是觉得有用。 后续我会把相关的内容,再次整理,做成一个人工智能专辑。 今天学习到了数据采集的环节。 这里有个问题,数据准备包括什么,还记得吗? 数…

Linux之ACL权限chmod命令

一. chmod命令 chmod命令来自英文词组change mode的缩写,其功能是改变文件或目录权限的命令。默认只有文件的所有者和管理员可以设置文件权限,普通用户只能管理自己文件的权限属性。 设置权限时可以使用数字法,亦可使用字母表达式&#xff0…

2.5G/5G/10G高速率网络变压器(网络隔离变压器)产品介绍(1)

Hqst华轩盛(石门盈盛)电子导读:高速率/2.5G 的带POE插件(DIP)款千兆双口网络变压器2G54801DP特点 一 ﹑2.5G高速率网络变压器(网络隔离变压器):2G54801DP外观与尺寸 2G54801DP这颗产品尺寸为:长…

Vue.js+SpringBoot开发超市商品管理系统

目录 一、摘要1.1 简介1.2 项目录屏 二、研究内容2.1 数据中心模块2.2 超市区域模块2.3 超市货架模块2.4 商品类型模块2.5 商品档案模块 三、系统设计3.1 用例图3.2 时序图3.3 类图3.4 E-R图 四、系统实现4.1 登录4.2 注册4.3 主页4.4 超市区域管理4.5 超市货架管理4.6 商品类型…

C语言——结构体——(第21篇)

坚持就是胜利 文章目录 一、结构体类型的声明1、结构的基础知识2、结构的声明3、结构成员的类型 二、结构体变量的定义和初始化结构体中包含结构体 三、结构体成员访问问题一:t.name "张三",对吗?问题二:set_Stu(s);应…

【深度学习目标检测】十九、基于深度学习的芒果计数分割系统-含数据集、GUI和源码(python,yolov8)

使用深度学习算法检测芒果具有显著的优势和应用价值。以下是几个主要原因: 特征学习的能力:深度学习,特别是卷积神经网络(CNN),能够从大量的芒果图像中自动学习和提取特征。这些特征可能是传统方法难以手动…

数学建模资料分享

1. 往年各赛题的优秀论文 可以用来参考一下论文是怎么写的。参考论文的结构,格式,思路等等。 链接:https://pan.baidu.com/s/1WG2t4-x9MjtaSgkq4ue5AQ?pwdnlzx 提取码:nlzx --来自百度网盘超级会员V4的分享 2.论文模板 链接&a…

操作系统访问控制机制

使用访问控制技术,可以设置用户对系统资源的访问权限,即限定用户只能访问允许访问的资源。访问控制还可以通过设置文件的属性,来保护文件只能被读而不能被修改,或只允许核准的用户对其进行修改等。 1.1 保护域 把一个进程能对某…

记录一次xpclr检测中报错(“No permission to write in the specified directory: {0}“)

这里写自定义目录标题 报错修正思路:将 -O参数修改成为相对目录加文件名称格式。 报错 看到这个问题,一头雾水,没有写入权限。结果是程序问题。 修正思路:将 -O’参数修改成为相对目录加文件名称格式。 代码:

软件实例,物流货运配货单打印模板软件单据打印查询管理系统软件教程,可以同时打印标签或补打

软件实例,物流货运配货单打印模板软件单据打印查询管理系统软件教程,可以同时打印标签或补打 一、前言 以下软件教程以 佳易王物流单打印查询系统V17.1为例说明 软件文件下载可以点击最下方官网卡片——软件下载——试用版软件下载 这个版本在原来基…

linux之JAVA环境配置Tomcat离线安装与启动

文章目录 一、jdk安装具体步骤二、tomcat安装具体步骤三、MySql具体步骤修改密码登录 四、部署单价项目具体步骤 一、jdk安装具体步骤 1、查询是否有jdk java -version 2、进入opt目录 cd /opt 3.连接服务器工具 进入opt目录,把压缩文件上传 4.等待传好之后&am…

二分算法(c++版)

二分的本质是什么? 很多人会认为单调性是二分的本质,但其实其本质并非单调性,只是说,有单调性的可以进行二分,但是有些题目没有单调性我们也可以进行二分。其本质其实是一个边界问题,给定一个条件&#xf…

【flutter】环境安装

安装flutter sdk 下载sdk flutter sdk就包含dart,所以我们只用安装flutter sdk就可以了。 我们去清华大学开源软件镜像站下载,flutter开发中,版本对不上基本项目就跑步起来,如果是团队协同开发的话,建议统一下载指定版…

【踩坑】PyTorch中指定GPU不生效和GPU编号不一致问题

转载请注明出处:小锋学长生活大爆炸[xfxuezhang.cn] 指定GPU不生效问题 解释:就是使用os.environ["CUDA_VISIBLE_DEVICES"] "1"后,后面使用起来仍然是cuda0. 解决:在最开头就使用 import os os.environ[&…

python-mysql协程并发常用操作封装

目录 前言封装代码测试代码参考 前言 协程异步操作MYSQL是常用的,博主这里在GitHub上找了两个包,databases和aiomysql,第一个包除了mysql外还支持其他的数据库,且操作MYSQL时底层也是使用的aiomysql,但文档内容比较少…

【大数据】Flink 内存管理(三):TaskManager 内存分配(理论篇)

Flink 内存管理(三):TaskManager 内存分配 1.配置 Total Memory2.配置 Heap and Managed Memory2.1 Task (Operator) Heap Memory2.2 Managed Memory 3.配置 Off-Heap Memory(Direct or Native)4.详细内存模型5.Framew…

YOLO系列论文阅读(v1--v3)

搞目标检测,绕不开的一个框架就是yolo,而且更糟糕的是,随着yolo的发展迭代,yolo网络可以做的事越来越多,语义分割,关键点检测,3D目标检测。。。这几天决定把YOLO系列彻底梳理一下,在…

C++的STL常用算法->常用遍历算法、常用查找算法、常用排序算法、常用拷贝和替换算法、常用算术生成算法、常用集合算法

#include<iostream> using namespace std; #include <algorithm> #include <vector> //常用遍历算法 for_each //普通函数 void print01(int val) { cout << val << " "; } //仿函数 //函数对象 class print02 { public: v…

Wireshark TS | Linux 系统对时问题

问题描述 节前业务运维同事提交了一个 case &#xff0c;说是部署在新业务区域的 Linux 服务器和老业务区域的 Linux 服务器无法对时&#xff0c;脚本里使用的是 clockdiff 命令&#xff0c;无法正常返回结果&#xff0c;而在老业务区域两台服务器之间执行命令就正常&#xff…