【深度学习目标检测】十九、基于深度学习的芒果计数分割系统-含数据集、GUI和源码(python,yolov8)

使用深度学习算法检测芒果具有显著的优势和应用价值。以下是几个主要原因:

  1. 特征学习的能力:深度学习,特别是卷积神经网络(CNN),能够从大量的芒果图像中自动学习和提取特征。这些特征可能是传统方法难以手动设计的,但对于芒果的检测和识别却至关重要。
  2. 适应复杂环境:芒果生长在不同的环境和条件下,其外观、颜色、形状等都可能发生变化。深度学习算法通过大量的训练数据,可以学习到这些变化,从而在不同环境下都能准确地检测芒果。
  3. 处理大数据:在芒果检测中,通常需要处理大量的图像数据。深度学习算法可以高效地处理这些数据,并快速给出检测结果。
  4. 减少人工干预:传统的芒果检测方法可能需要人工目视观察或者使用特定的工具,这既费时又费力。深度学习算法可以实现自动化检测,减少人工干预,提高检测效率。
  5. 提高检测准确性:深度学习算法在训练过程中不断优化,可以实现对芒果的精确检测。与传统方法相比,深度学习算法具有更高的检测准确率和鲁棒性。

综上所述,使用深度学习算法检测芒果可以提高检测效率、准确性和自动化水平,是芒果检测领域的一种重要技术手段。

本文介绍了基于深度学习yolov8的芒果检测系统,包括训练过程和数据准备过程,同时提供了推理的代码和GUI。对准备计算机视觉相关的毕业设计的同学有着一定的帮助。

检测结果如下图:

一、安装YoloV8

yolov8官方文档:主页 - Ultralytics YOLOv8 文档

安装部分参考:官方安装教程

1、安装pytorch

根据本机是否有GPU,安装适合自己的pytorch,如果需要训练自己的模型,建议使用GPU版本。

①GPU版本的pytorch安装

对于GPU用户,安装GPU版本的pytorch,首先在cmd命令行输入nvidia-smi,查看本机的cuda版本,如下图,我的cuda版本是12.4(如果版本过低,建议升级nvidia驱动):

打开pytorch官网,选择合适的版本安装pytorch,如下图,建议使用conda安装防止cuda版本问题出现报错:

②CPU版本pytorch安装

打开pytorch官网,选择CPU版本安装pytorch,如下图:

2、安装yolov8

在命令行使用如下命令安装:

pip install ultralytics

二、数据集准备

芒果实例分割数据集包含453个训练数据,91个测试数据,数据如下所示:

为了使用yolov8进行训练,需要将数据集转为yolo格式,本文提供转换好的数据集连接:mango-yolov8数据集

三、模型配置及训练

1、数据集配置文件

创建数据集配置文件mango.yaml,内容如下(将path路径替换为自己的数据集路径):

# Ultralytics YOLO 🚀, AGPL-3.0 license
# COCO 2017 dataset http://cocodataset.org by Microsoft
# Example usage: yolo train data=coco.yaml
# parent
# ├── ultralytics
# └── datasets
#     └── coco  ← downloads here (20.1 GB)
 
 
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: D:\DeepLearning\datasets\csdn\mango-segmentation-dataset\mango_yolov8  # 替换为自己的数据集路径
train: images/train 
val: images/test 
test: images/test  
 
# Classes
names:
  # 0: normal
  0: mango

2、训练模型

使用如下命令训练模型,数据配置文件路径更改为自己的路径,model根据自己的需要使用yolov8n/s/l/x版本,其他参数根据自己的需要进行设置:

yolo segment train project=mango name=train exist_ok data=mango/mango.yaml model=yolov8n-seg.yaml epochs=100 imgsz=640

3、验证模型

使用如下命令验证模型,相关路径根据需要修改:

yolo segment val imgsz=640 model=mango/train/weights/best.pt data=mango/mango.yaml

精度如下:

Ultralytics YOLOv8.1.10 🚀 Python-3.9.18 torch-2.2.0 CUDA:0 (NVIDIA GeForce RTX 3060, 12288MiB)
YOLOv8n-seg summary (fused): 195 layers, 3258259 parameters, 0 gradients, 12.0 GFLOPs
val: Scanning D:\DeepLearning\datasets\csdn\mango-segmentation-dataset\mango_yolov8\labels\test.cache... 90 images, 0 backgrounds, 0 corrupt: 100%|██████████| 90/90 [00:00<? 
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95)     Mask(P          R      mAP50  mAP50-95): 100%|██████████| 6/6 [00:02<00:00,  2.1
                   all         90        578      0.961      0.953      0.985      0.892       0.96      0.952      0.985      0.837
Speed: 5.1ms preprocess, 8.0ms inference, 0.0ms loss, 2.2ms postprocess per image
Results saved to runs\segment\val
💡 Learn more at https://docs.ultralytics.com/modes/val

四、推理

训练好了模型,可以使用如下代码实现推理,权重路径修改为自己的路径:

from PIL import Image
from ultralytics import YOLO
 
# 加载预训练的YOLOv8n模型
model = YOLO('best.pt')
 
image_path = 'test.jpg'
results = model(image_path)  # 结果列表
 
# 展示结果
for r in results:
    im_array = r.plot()  # 绘制包含预测结果的BGR numpy数组
    im = Image.fromarray(im_array[..., ::-1])  # RGB PIL图像
    im.show()  # 显示图像
    im.save('results.jpg')  # 保存图像

五、界面开发

使用pyqt5开发gui界面,支持图片、视频、摄像头输入,支持导出到指定路径,其GUI如下图(完整GUI代码可在下方链接下载):

代码下载连接:基于yolov8的芒果计数分割系统,包含训练好的权重和推理代码,GUI界面,支持图片、视频、摄像头输入,支持检测结果导出

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/407872.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

数学建模资料分享

1. 往年各赛题的优秀论文 可以用来参考一下论文是怎么写的。参考论文的结构&#xff0c;格式&#xff0c;思路等等。 链接&#xff1a;https://pan.baidu.com/s/1WG2t4-x9MjtaSgkq4ue5AQ?pwdnlzx 提取码&#xff1a;nlzx --来自百度网盘超级会员V4的分享 2.论文模板 链接&a…

操作系统访问控制机制

使用访问控制技术&#xff0c;可以设置用户对系统资源的访问权限&#xff0c;即限定用户只能访问允许访问的资源。访问控制还可以通过设置文件的属性&#xff0c;来保护文件只能被读而不能被修改&#xff0c;或只允许核准的用户对其进行修改等。 1.1 保护域 把一个进程能对某…

记录一次xpclr检测中报错(“No permission to write in the specified directory: {0}“)

这里写自定义目录标题 报错修正思路&#xff1a;将 -O参数修改成为相对目录加文件名称格式。 报错 看到这个问题&#xff0c;一头雾水&#xff0c;没有写入权限。结果是程序问题。 修正思路&#xff1a;将 -O’参数修改成为相对目录加文件名称格式。 代码&#xff1a;

软件实例,物流货运配货单打印模板软件单据打印查询管理系统软件教程,可以同时打印标签或补打

软件实例&#xff0c;物流货运配货单打印模板软件单据打印查询管理系统软件教程&#xff0c;可以同时打印标签或补打 一、前言 以下软件教程以 佳易王物流单打印查询系统V17.1为例说明 软件文件下载可以点击最下方官网卡片——软件下载——试用版软件下载 这个版本在原来基…

linux之JAVA环境配置Tomcat离线安装与启动

文章目录 一、jdk安装具体步骤二、tomcat安装具体步骤三、MySql具体步骤修改密码登录 四、部署单价项目具体步骤 一、jdk安装具体步骤 1、查询是否有jdk java -version 2、进入opt目录 cd /opt 3.连接服务器工具 进入opt目录&#xff0c;把压缩文件上传 4.等待传好之后&am…

二分算法(c++版)

二分的本质是什么&#xff1f; 很多人会认为单调性是二分的本质&#xff0c;但其实其本质并非单调性&#xff0c;只是说&#xff0c;有单调性的可以进行二分&#xff0c;但是有些题目没有单调性我们也可以进行二分。其本质其实是一个边界问题&#xff0c;给定一个条件&#xf…

【flutter】环境安装

安装flutter sdk 下载sdk flutter sdk就包含dart&#xff0c;所以我们只用安装flutter sdk就可以了。 我们去清华大学开源软件镜像站下载&#xff0c;flutter开发中&#xff0c;版本对不上基本项目就跑步起来&#xff0c;如果是团队协同开发的话&#xff0c;建议统一下载指定版…

【踩坑】PyTorch中指定GPU不生效和GPU编号不一致问题

转载请注明出处&#xff1a;小锋学长生活大爆炸[xfxuezhang.cn] 指定GPU不生效问题 解释&#xff1a;就是使用os.environ["CUDA_VISIBLE_DEVICES"] "1"后&#xff0c;后面使用起来仍然是cuda0. 解决&#xff1a;在最开头就使用 import os os.environ[&…

python-mysql协程并发常用操作封装

目录 前言封装代码测试代码参考 前言 协程异步操作MYSQL是常用的&#xff0c;博主这里在GitHub上找了两个包&#xff0c;databases和aiomysql&#xff0c;第一个包除了mysql外还支持其他的数据库&#xff0c;且操作MYSQL时底层也是使用的aiomysql&#xff0c;但文档内容比较少…

【大数据】Flink 内存管理(三):TaskManager 内存分配(理论篇)

Flink 内存管理&#xff08;三&#xff09;&#xff1a;TaskManager 内存分配 1.配置 Total Memory2.配置 Heap and Managed Memory2.1 Task (Operator) Heap Memory2.2 Managed Memory 3.配置 Off-Heap Memory&#xff08;Direct or Native&#xff09;4.详细内存模型5.Framew…

YOLO系列论文阅读(v1--v3)

搞目标检测&#xff0c;绕不开的一个框架就是yolo&#xff0c;而且更糟糕的是&#xff0c;随着yolo的发展迭代&#xff0c;yolo网络可以做的事越来越多&#xff0c;语义分割&#xff0c;关键点检测&#xff0c;3D目标检测。。。这几天决定把YOLO系列彻底梳理一下&#xff0c;在…

C++的STL常用算法->常用遍历算法、常用查找算法、常用排序算法、常用拷贝和替换算法、常用算术生成算法、常用集合算法

#include<iostream> using namespace std; #include <algorithm> #include <vector> //常用遍历算法 for_each //普通函数 void print01(int val) { cout << val << " "; } //仿函数 //函数对象 class print02 { public: v…

Wireshark TS | Linux 系统对时问题

问题描述 节前业务运维同事提交了一个 case &#xff0c;说是部署在新业务区域的 Linux 服务器和老业务区域的 Linux 服务器无法对时&#xff0c;脚本里使用的是 clockdiff 命令&#xff0c;无法正常返回结果&#xff0c;而在老业务区域两台服务器之间执行命令就正常&#xff…

Java基于微信小程序的校园二手物品交易系统,附源码

博主介绍&#xff1a;✌程序员徐师兄、7年大厂程序员经历。全网粉丝12w、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专栏推荐订阅&#x1f447;…

公厕智慧化_智慧化的公厕

公厕智慧化是现代城市建设中的重要一环。通过信息化、数字化和智慧化技术手段&#xff0c;实现对公共厕所的高效管理和服务&#xff0c;不仅提升了城市环境质量&#xff0c;还改善了居民生活品质。智慧公厕的智慧化包括监测、管理、服务和设备的智慧化&#xff0c;利用先进科技…

Unity中URP实现水体效果(水的深度)

文章目录 前言一、搭建预备场景1、新建一个面片&#xff0c;使其倾斜一个角度&#xff0c;来模拟水底和岸边的效果2、随便创建几个物体&#xff0c;作为与水面接触的物体3、再新建一个面片&#xff0c;作为水面 二、开始编写水体的Shader效果1、新建一个URP基础Shader2、把水体…

汇编语言movs指令学习

字符串传送指令(Move String Instruction) movs 该指令是把指针DS:SI所指向的字节、字或双字传送给指针ES:DI所指向内存单元&#xff0c;并根据标志位DF对寄存器DI和SI作相应增减。该指令的执行不影响任何标志位。 记不清这指令是8086就有的&#xff0c;还是386以后新加的&…

【Redis】常见的5种数据类型(上)

文章目录 1 :peach:前言:peach:2 :peach:Redis 基本的全局命令:peach:2.1 :apple:keys:apple:2.2 :apple:exists:apple:2.3 :apple:del:apple:2.4 :apple:expire:apple:2.5 :apple:ttl:apple:2.6 :apple:type:apple: 3 :peach:单线程架构:peach:4 :peach:Redis 的 5 种常见数据…

Qt_纯虚函数的信号和槽

简介 在C中&#xff0c;纯虚函数是一个在基类中声明但没有实现的虚函数。纯虚函数的声明以 “ 0” 结尾。纯虚函数的目的是为了提供一个接口&#xff0c;但是不提供实现。派生类必须实现纯虚函数&#xff0c;否则它也会成为一个抽象类。纯虚函数可以在基类中定义&#xff0c;也…

MySQL--索引结构

索引-索引结构 1. 概述2. 二叉树3. B-Tree4. BTree5. Hash 1. 概述 MySQL的索引是在存储引擎层实现的&#xff0c;不同的存储引擎有不同的索引结构&#xff0c;主要包含以下几种&#xff1a; 上述是MySQL中所支持的所有的索引结构&#xff0c;下面展示不同的存储引擎对于索引…