回归预测 | MATLAB实现GRU(门控循环单元)多输入单输出(不调用工具箱函数)
文章目录
- 回归预测 | MATLAB实现GRU(门控循环单元)多输入单输出(不调用工具箱函数)
- 预测效果
- 基本介绍
- 程序设计
- 参考资料
预测效果
基本介绍
GRU神经网络是LSTM神经网络的一种变体,LSTM 神经网
络是在RNN的基础上发展起来的。RNN是一种成熟的机器学习方法,在处理时序数列方面具有着很大优势。RNN中包含信号反馈结构,能将t时刻的输出信息与t时刻之前的信息相关联,具有动态特征和记忆功能。
- RNN结构包括输入层、隐藏层和输出层,其中隐藏层包含反馈结构;
- t时刻的输出值是该时刻及其之前时刻的输入信息共同作用的结果;
- RNN能够有效地分析和处理较短的时序数列,但不能分析和处理维
度过长的时序数列,否则会产生“梯度消失”或“梯度爆炸”的现象。 - 针对这一问题,H等提出了一种RNN改进结构LSTM神经网络,其隐藏层结构如图示。
- LSTM神经网络基于隐藏层中的记忆单元(遗忘门、输入门和输出门)实现时序上的记忆可控,改善了RNN长期记忆力不足的问题,但其隐藏层的结构过于复杂,样本训练需要花费大量的时间。
- 基于LSTM神经网络,cho等提出了GRU神经网络,利用重置门和更新门代替LSTM神经网络中的遗忘门、输入门和输出门。LSTM神经网络和GRU神经网络在隐藏层内具有相似的数据流,但GRU神经网络中没有单独的存储单元,因此样本训练效率更高。
- GRU神经网络的隐藏层结构示意图。由图可见:更新门控制前一时刻的信息对当前时刻的影响程度,更新门的值越大,前一时刻的信息对当
前时刻的影响越小;重置门控制对前一时刻信息的接收百分比,重置门的值越大,对前一时刻的信息接收的越多。
程序设计
- 完整源码和数据获取方式1:私信博主回复** MATLAB实现GRU(门控循环单元)多输入单输出(不调用工具箱函数)**获取。
- 完整源码和数据获取方式2:订阅《GRU门控循环单元》专栏,订阅后两天内私信博主获取程序和数据,专栏外只能获取该程序。
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%-------------------------------------------------------------------------------------
%% 导入数据
res = xlsread('data.xlsx');
%% 划分训练集和测试集
temp = randperm(103);
P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);
%-------------------------------------------------------------------------------------
P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);
%-------------------------------------------------------------------------------------
%% 数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);
[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
% MAE
mae1 = sum(abs(T_sim1' - T_train)) ./ M ;
mae2 = sum(abs(T_sim2' - T_test )) ./ N ;
disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])
% MBE
mbe1 = sum(T_sim1' - T_train) ./ M ;
mbe2 = sum(T_sim2' - T_test ) ./ N ;
disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129252252
[2] https://blog.csdn.net/kjm13182345320/article/details/128172453