深度学习主流开源框架:Caffe、TensorFlow、Pytorch、Theano、Keras、MXNet、Chainer

2.6 深度学习主流开源框架

表2.1 深度学习主流框架参数对比
请添加图片描述

框架关键词总结

框架关键词基本数据结构(都是高维数组)
Caffe“在工业中应用较为广泛”,“编译安装麻烦一点”Blob
TensorFlow“安装简单pip”Tensor
Pytorch“定位:快速实验研究”,“简单”,“灵活”Tensor
Theano× “用于处理大规模神经网络的训练”,“不支持移动设备”,“不能应用于工业环境”,“编译复杂模型时间非常久”
Keras“高度模块化”,“适合在探索阶段能快速尝试各种网络结构”,“从CPU上计算切换到GPU加速无需任何代码的改动”,“适用于复杂模型
MXNet“轻量级”、“AWS官方推荐的深度学习框架”,“可在小内存上训练深度神经网络模型”,“可在移动设备上运行图像识别等任务”
Chainer“为复杂神经网络的实现提供了更大的灵活性”,“已在丰田汽车、松下和FANUC 等公司投入使用”

2.6.1 Caffe简介

Caffe是基于C++语言以及CUDA开发的框架,支持MATLAB、Python接口和命令行,可以直接在GPU和CPU中进行切换,训练效率有保障,在工业中应用较为广泛

优点

  • 在Caffe中,网络层通过C++定义,网络配置使用Protobu定义,可以较方便地进行深度网络的训练与测试
  • Caffe代码易懂、好理解、搞笑、使用、上手简单,比较成熟和完善,实现基础算法方法快捷,适合工业快速应用与部署
  • Caffe保留所有的有向无向环图,确保能正确的进行前向传播和反向传播,Caffe是一个典型的端到端的机器学习系统。
  • 每一个Caffe网络都开始于数据层,结束于损失函数层

结构

Caffe通过Blob以四维数组的方式存储和传递数据。

Caffe还提供了一套完整的层类型。一个层(Layer)是一个神经网络层的本质,它采用一个或多个Blob作为输入并产生一个或多个Blob作为输出。

缺点

  • 编译安装稍微麻烦一点(相对于TenorFlow等使用pip一键安装的方式)

    1. 以Ubuntu16.04为例,官网的安装脚本足够用了,有一些依赖库。

    2. 装完之后,去Git上复制代码(https://github.com/BVLC/caffe),修改Makefile.config就可以编译安装了。

      注意:对于GPU安装,还需要安装CUDA以及NVIDIA驱动

关键词:“在工业中应用较为广泛”,“编译安装麻烦一点”

2.6.2 TensorFlow简介

TensorFlow是Google Brain推出的开源机器学习库,与Caffe一样,主要用于深度学习的相关任务

结构

  • TensorFlow中的Tensor就是张量,代表N维数组,与Caffe中的blob是类似的。
  • Flow是流,代表基于数据流图的计算。

神经网络的运算过程就是数据从一层到下一层,TensorFlow更直接地强调了这个过程。

最大特点是计算图,即先定义好图,然后进行运算,因此所有的TensorFlow代码都包含两部分

  • 第一部分:创建计算图。表示计算的数据流,实际上就是定义好一些操作,可以将它看做Caffe中Prototxt的定义过程
  • 第二部分:运行会话。执行图中的运算,可以看做Caffe中的训练过程,只是TensorFlow的会话比Caffe灵活很多。因为是Python接口,所以取中间的结果分析和debug等方便很多。

优点

  • 与Caffe相比,TensorFlow的安装简单很多,一个pip命令就可以解决。
  • TensorFlow不止局限于神经网络,其数据流式图支持非常自由的算法表达,可以轻松实现深度学习以外的机器学习算法
  • 在TensorFlow中定义新的节点时只需要写一个Python函数,如果没有对应的底层运算核,则需要编写C++或者CUDA代码来实现运算操作。
  • TensorFlow还支持深度强化学习及其他计算密集的科学计算(如偏微分方程求解等)

缺点:

  • TensorFlow采用静态图,先定义好图,然后再Session中运算。图一旦定义好后是不能随意修改的。目前,TensorFlow虽然也引入了动态图机制Eager Execution,只是不如Pytorch直观
  • TensorFlow学习成本高,对新手来说,Tensor、Variable、Session等概念众多,数据读取接口频繁更新,tf.nn、tf.layers、tf.contrib各自重复。

关键词:“安装简单pip”

2.6.3 PyTorch简介

Torch是纽约大学的一个机器学习开源框架,几年前在学术界非常流行。但是由于其初始只支持Lua语言,导致其没有普及。随着Python的生态越来越完善,Facebook人工智能研究院推出了Pytorch并将其开源。

  • Pytorch不是简单地封装Torch并提供Python接口,而是对Tensor以上的所有代码进行了重构,同TensorFlow一样,增加了自动求导功能
  • Pytorch的定位是快速实验研究,因此可直接用Python写新层。之后Caffe2被全部并入PyTorch,如今已经成为非常流行的框架。

特点

  • 动态图计算

    Pytorch就像是脚本语言,可以随时随地地修改,随处调试,没有一个类似编译的过程,比TensorFlow灵活很多

  • 简单

    从Tensor到Variable再到nn.Module,是从数据张量到网络的抽象层次的递进

注:在Pytorch中,Tensor的使用与NumPy的数组非常相似,二者可以互转且共享内存

通过调用torch.cuda.is_available()函数,可以检查Pytorch中是否有可用的CUDA

关键词:“定位:快速实验研究”,“简单”,“灵活”

2.6.4 Theano简介

Theano由蒙特利尔大学Lisa Lab团队开发并维护,它是一个高性能的符号计算及深度学习库,用于处理大规模神经网络的训练

优点

  • Theano整合了Numpy,可以直接使用ndarray等功能,无需直接进行CUDA编码即可方便地进行神经网络结构设计。【因为其核心是数学表达式编辑器,计算稳定性好,所以可以精确地计算输出值很小的函数(如log(1+x))】
  • 支持Linux、MacOS、Windows

缺点

  • 没有底层C++的接口,模型的部署非常不方便,需要以来各种Python库,并且不支持各种移动设备,因此其几乎没有在工业生产环境中应用。
  • 在CPU上的执行性能比较差,但在单GPU上的执行效率不错,性能和其他框架类似
  • Theano运算时需要将用户的Python代码转换为CUDA代码,再编译为二进制可执行文件,编译复杂模型的时间非常久
  • Theano在导入时也比较慢,而且一旦设定了选择某块GPU,就无法切换到其他设备

关键词:× “用于处理大规模神经网络的训练”,“不支持移动设备”,“不能应用于工业环境”,“编译复杂模型时间非常久”

2.6.5 Keras简介

Keras是一个高度模块化的神经网络库,用Python实现,可以同时运行在TensorFlow和Theano上。

优点

  • Keras无需额外的文件来定义模型,仅通过编程的方式改变模型结构和调整超参数,旨在让用户进行最快速的原型实验,因此适合在探索阶段快速地尝试各种网络结构

  • Keras组件都是可插拔的模块,使用时只需要将一个个组件(如卷积层和激活函数等)连接起来即可,在Keras中通过几行代码就能实现MLP,AlexNet的实现也只需要十几行代码。

  • Keras专注于深度学习(Theano和TensorFlow的计算图支持更通用的计算)。同时支持卷积网络和循环网络,支持级联的模型或任意的图结构模型,从CPU上计算切换到GPU加速无需任何代码的改动

  • 节约尝试新网络结构的时间

    Keras底层使用的是Theano或TensorFlow,用Keras训练模型相比于前两者基本没有性能损耗(还可以享受前两者持续开发带来的性能提升),只是简化了编程的复杂度,节约了尝试新网络结构的时间。

    即模型越复杂,使用Keras的收益越大,尤其是在高度依赖全职共享、多模型组合和多任务学习等模型上,Keras表现得非常突出。

缺点

  • 但是设计新模块或者新的Layer时则不太方便

关键词:“高度模块化”,“适合在探索阶段能快速尝试各种网络结构”,“从CPU上计算切换到GPU加速无需任何代码的改动”,“适用于复杂模型”

2.6.6 MXNet简介

MXNet 是DMLC(Distributed Machine Learning Community)开发的一款开源的、轻量级、可移植、灵活的深度学习库,它让用户可以灵活地混合使用符号编程模式和指令式编程模式,以达到效率最大化,目前它已经是AWS官方推荐的深度学习框架。

优点

  • MXNet是在各个框架中率先支持多GPU 和分布式的框架,同时其分布式性能也非常高。MXNet的核心是一个动态的依赖调度器,支持自动将计算任务并行化到多个GPU 或分布式集群(支持AWS、Azure、Yarn 等)上。

  • 基于上层的计算图优化算法不仅加速了符号计算的过程,而且内存占用较小。开启镜像模式之后,甚至可以在小内存的GPU上训练深度神经网络模型,同样可以在移动设备(如Android和iOS)上运行基于深度学习的图像识别等任务

缺点

  • 训练时间长

MXNet支持多语言封装,基本涵盖所有主流的脚本语言,如MATLAB、JavaScript、Julia、C++、Python 和R 语言等。虽然MXNet构造并训练网络的时间长于高度封装类框架 Keras 和PyTorch,但是明显短于Theano框架。

关键词:“轻量级”、“AWS官方推荐的深度学习框架”,“可在小内存上训练深度神经网络模型”,“可在移动设备上运行图像识别等任务”

2.6.7Chainer 简介

Chainer 是一个由Preferred Networks公司推出并获得英特尔支援,专门为高效研究和开发深度学习算法而设计的开源框架。Chainer使用纯Python 和NumPy提供了一个命令式的API,为复杂神经网络的实现提供了更大的灵活性

优点

  • 在训练时“实时”构建计算图,非常适合此类复杂神经网络的构建。这种方法可以让用户在每次前向计算时根据条件更改计算图。同时也可以很容易地使用标准调试器和分析器来调试和重构基于Chainer 的代码。
  • 支持最新的优化方法、序列化方法以及使用CuPy的由CUDA驱动的更快速的计算方法,目前已在丰田汽车、松下和FANUC 等公司投入使用

关键词:“为复杂神经网络的实现提供了更大的灵活性”,“已在丰田汽车、松下和FANUC 等公司投入使用”

参考文献:

《深度学习之图像识别 核心算法与实战案例 (全彩版)》 言有三 著

出版社:清华大学出版社

出版时间:2023年7月第一版(第一次印刷)

ISBN:978-7-302-63527-7

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/390614.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【STM32 CubeMX】I2C层次结构、I2C协议

文章目录 前言一、I2C的结构层次1.1 怎样在两个设备之间传输数据1.2 I2C如何传输数据1.3 硬件框图1.4 软件层次 二、IIC协议2.1 硬件连接2.2 I2C 总线的概念2.3 传输数据类比2.3 I2C信号2.4 I2C数据的含义 总结 前言 在STM32 CubeMX环境中,I2C(Inter-In…

MongoDB数据库又被勒索攻击了

前言 朋友发来一张图片,说MongoDB数据库被勒索了,问我是哪个家族的...... (上图来源于网络),当笔者看到朋友发的图片之后,判断应该是黑客入侵了MongoDB数据库服务器,然后删除了数据库里面的数据&#xff0…

QPaint绘制自定义坐标轴组件00

最终效果 1.创建一个ui页面,修改背景颜色 鼠标右键->改变样式表->添加颜色->background-color->选择合适的颜色->ok->Apply->ok 重新运行就可以看到widget的背景颜色已经改好 2.创建一个自定义的widget窗口小部件类,class MyChart…

OpenCV-41 使用掩膜的直方图

一、掩膜 掩膜即为与原图大小一致的黑底白框图。 如何生成掩膜? 先生成一个全黑的和原始图片大小一样大的图片。mask np.zeros(img.shape, np.uint8)将想要的区域通过索引方式设置为255.mask[100:200, 200:300] 示例代码如下: import cv2 import ma…

【电路笔记】-LR串联电路

LR串联电路 文章目录 LR串联电路1、概述2、示例1所有线圈、电感器、扼流圈和变压器都会在其周围产生磁场,由电感与电阻串联组成,形成 LR 串联电路。 1、概述 在本节有关电感器的第一个文章中,我们简要介绍了电感器的时间常数,指出流过电感器的电流不会瞬时变化,而是会以恒…

【LeetCode: 107. 二叉树的层序遍历 II + BFS】

🚀 算法题 🚀 🌲 算法刷题专栏 | 面试必备算法 | 面试高频算法 🍀 🌲 越难的东西,越要努力坚持,因为它具有很高的价值,算法就是这样✨ 🌲 作者简介:硕风和炜,…

不花一分钱,在 Mac 上跑 Windows(M1/M2 版)

这是在 MacOS M1 上体验最新 Windows11 的效果: VMware Fusion,可以运行 Windows、Linux 系统,个人使用 licence 免费 安装流程见 👉 https://zhuanlan.zhihu.com/p/452412091 从申请 Fusion licence 到下载镜像,再到…

PPT导出PDF时保持图像高清的方法

问题: 我们经常会发现,在PPT中插入的图片非常高清,但是通过PPT转换为PDF之后,图片就会出现不同程度的失真。 问题产生的原因: 这是因为Acrobat的PDF Maker在将PPT转换为PDF的时候,对PPT中的图片进行了压缩 Solution: 在PPT的…

信息安全技术基础知识

一、考点分布 信息安全基础(※※)信息加密解密技术(※※※)密钥管理技术(※※)访问控制及数字签名技术(※※※)信息安全的保障体系 二、信息安全基础 信息安全包括5个基本要素&#…

ChatGPT绘图指南:DALL.E3玩法大全(一)

一、 DALLE.3 模型介绍 1、什么是 DALLE.3 模型? DALLE-3模型,是一种由OpenAI研发的技术,它是一种先进的生成模型,可以将文字描述转化为清晰的图片。这种模型的名称"DALLE"实际上是"Deep Auto-regressive Latent …

Qt:Qt3个窗口类的区别、VS与QT项目转换

一、Qt3个窗口类的区别 QMainWindow:包含菜单栏、工具栏、状态栏 QWidget:普通的一个窗口,什么也不包括 QDialog:对话框,常用来做登录窗口、弹出窗口(例如设置页面) QDialog实现简易登录界面…

致敬新春“不回家”的厨师,李锦记让厨师的年味更有滋味

“新春饭市万家团圆,致敬千万坚守岗位的厨师” 新春团圆饭向来是餐饮行业最为关注的节点,但过去几年,在疫情与后疫情时期,新年团圆饭市不免冷清。而今年餐饮行业真正迎来“龙抬头”,龙年除夕夜的团圆饭市终于重迎来了…

第三十三回 镇三山大闹青州道 霹雳火夜走瓦砾场-python分割字符串

黄信和刘知寨押解宋江和花荣向青州走,碰到了燕顺等三人来劫囚车,黄信逃走了,刘知寨被抓住,被花荣一刀杀了。 黄信把情况报给青州知府,派来了青州兵马秦统制,人称霹雳火的秦明。秦明与花荣打,花…

Go语言每日一练——链表篇(九)

传送门 牛客面试笔试必刷101题 ----------------链表相加(二) 题目以及解析 题目 解题代码及解析 解析 这一道题主要是要对链表相加的过程进行模拟,虽然思路不难但是细节出比较多,这里博主的思路主要是先将两个链表反转过来然后以Head1为基础来模拟…

JAVA并发编程(八)-无锁-乐观锁(非阻塞)

文章目录 🐶一、无锁实现(CAS)1、代码演示2、CAS效率分析3、CAS的特点 🐱二、原子整数🐭三、原子引用1、代码演示2、ABA问题3、AtomicMarkableReference 🐹四、原子数组🐰五、字段更新器&#x…

多线程的基本原理学习

由一个问题引发的思考 线程的合理使用能够提升程序的处理性能,主要有两个方面,第一个是能够利用多核cpu以及超线程技术来实现线程的并行执行;第二个是线程的异步化执行相比于同步执行来说,异步执行能够很好的优化程序的处理性能提…

EasyRecovery软件有哪些版本?如何下载2024最新版本

EasyRecovery 是一款功能强大的数据恢复软件,适用于电脑上的数据恢复需求。以下是该软件的不同电脑版本及其主要特点: EasyRecovery Home(家用版): 主要针对家庭用户,提供常规的数据恢复功能。可以恢复各种…

计算机毕业设计SSM基于的高校学习资源共享系统

项目运行 环境配置: Jdk1.8 Tomcat7.0 Mysql HBuilderX(Webstorm也行) Eclispe(IntelliJ IDEA,Eclispe,MyEclispe,Sts都支持)。 项目技术: vue mybatis Maven mysql5.7或8.0等等组成,B…

项目管理工具软件Maven趣闻

版权声明 本文原创作者:谷哥的小弟作者博客地址:http://blog.csdn.net/lfdfhl Maven这个单词来自于意第绪语(Yiddish),这是一种与德语和希伯来语有密切关系的犹太民族语言。在这个语境中,Maven意为“知识的…

typescript环境搭建,及tsc命令优化

typescript typescript. 是一种由微软开发的 开源 、跨平台的编程语言。. 它是 JavaScript 的超集,最终会被编译为JavaScript代码。. TypeScript添加了可选的静态类型系统、很多尚未正式发布的ECMAScript新特性(如装饰器 [1] )。. 2012年10月…