多线程的基本原理学习

由一个问题引发的思考

线程的合理使用能够提升程序的处理性能,主要有两个方面,第一个是能够利用多核cpu以及超线程技术来实现线程的并行执行;第二个是线程的异步化执行相比于同步执行来说,异步执行能够很好的优化程序的处理性能提升并发吞吐量 ,同时,也带来了很多麻烦,举个简单的例子 多线程对于共享变量访问带来的安全性问题 一个变量i. 假如一个线程去访问这个变量进行修改,这个时候对于数据的修改和访问没有任何问题。但是如果多个线程对于这同一个变量进行修改,就会存在一个数据安全性问题 。

在这里插入图片描述

对于线程安全性,本质上是管理对于数据状态的访问,而且这个这个状态通常是共享的、可变的。共享,是指这个数据变量可以被多个线程访问;可变,指这个变量的值在它的生命周期内是可以改变的。
一个对象是否是线程安全的,取决于它是否会被多个线程访问,以及程序中是如何去使用这个对象的。所以,如果多个线程访问同一个共享对象,在不需额外的同步以及调用端代码不用做其他协调的情况下,这个共享对象的状态依然是正确的(正确性意味着这个对象的结果与我们预期规定的结果保持一致),那说明这个对象是线程安全的。
package com.sp.demo;

/**
 * @author : lssffy
 * @Description :
 * @date : 2024/2/16 18:02
 */
public class Demo {
    private static int count = 0;
    public static void inc(){
        try {
            Thread.sleep(1);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        count++;
    }

    public static void main(String[] args) throws InterruptedException {
        for (int i = 0; i < 1000;i++){
            new Thread(()->Demo.inc()).start();
        }
        Thread.sleep(3000);
        System.out.println("运行结果:" + count);
    }
}

思考如何保证线程并行的数据安全性

问题的本质在于共享数据存在并发访问。如果我们能够有一种方法使得线程的并行变成串行,那是不是就不存在这个问题呢? 按照大家已有的知识,最先想到的应该就是锁吧。  毕竟这个场景并不模式,我们在和数据库打交道的时候,就了解过悲观锁、乐观锁的概念。 什么是锁?它是处理并发的一种同步手段,而如果需要达到前面我们说的一个目的,那么这个锁一定需要实现互斥的特性。 Java 提供的加锁方法就是Synchroinzed关键字。

synchronized 的基本认识

在多线程并发编程中synchronized一直是元老级角色,很多人都会称呼它为重量级锁。但是,随着 Java SE 1.6 对synchronized 进行了各种优化之后,有些情况下它就并不那么重,Java SE 1.6中为了减少获得锁和释放锁带来的性能消耗而引入的偏向锁和轻量级锁。这块在后续我们会慢慢展开.

synchronized 的基本语法

synchronized 有三种方式来加锁,分别是 
1. 修饰实例方法,作用于当前实例加锁,进入同步代码前要获得当前实例的锁 获得当前类对象的锁 
2. 静态方法,作用于当前类对象加锁,进入同步代码前要
3. 修饰代码块,指定加锁对象,对给定对象加锁,进入同步代码库前要获得给定对象的锁。 不同的修饰类型,代表锁的控制粒度 
synchronized 的应用 
修改前面的案例,使用synchronized关键字后,可以达到数据安全的效果 
package com.sp.demo;

/**
 * @author : lssffy
 * @Description :
 * @date : 2024/2/16 18:02
 */
public class Demo {
    private static int count = 0;
    public static void inc(){
        **synchronized** (Demo.class) {
            try {
                Thread.sleep(1);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            count++;
        }
    }

    public static void main(String[] args) throws InterruptedException {
        for (int i = 0; i < 1000;i++){
            new Thread(()->Demo.inc()).start();
        }
        Thread.sleep(3000);
        System.out.println("运行结果:" + count);
    }
}

思考锁是如何存储的

可以思考一下,要实现多线程的互斥特性,那这把锁需要哪些因素? 
1. 锁需要有一个东西来表示,比如获得锁是什么状态、无锁状态是什么状态 
2. 这个状态需要对多个线程共享 那么我们来分析,synchronized锁是如何存储的呢?观察synchronized 的整个语法发现,synchronized(lock)是基于存储和这个lock对象有关系呢? 
对象在内存中的布局 
lock 这个对象的生命周期来控制锁粒度的,那是不是锁的于是我们以对象在jvm内存中是如何存储作为切入点,去看看对象里面有什么特性能够实现锁 在Hotspot 虚拟机中,对象在内存中的存储布局,可以分为三个区域:对象头(Header)、实例数据(Instance Data)、对齐填充(Padding) 

在这里插入图片描述

探究Jvm源码实现 
当我们在Java 代码中,使用new 创建一个对象实例的时候,(hotspot 虚拟机)JVM 层面实际上会创建一个 instanceOopDesc 对象。 
Hotspot 虚拟机采用 OOP-Klass 模型来描述 Java 对象实例,OOP(Ordinary Object Point)指的是普通对象指针,Klass 用来描述对象实例的具体类型。Hotspot 采用instanceOopDesc 和 arrayOopDesc 来描述对象头,arrayOopDesc 对象用来描述数组类型 instanceOopDesc 的定义在 Hotspot 源 码 中 的 instanceOop.hpp 文件中,另外,arrayOopDesc 的定义对应 arrayOop.hpp.

在这里插入图片描述
从 instanceOopDesc 代码中可以看到 instanceOopDesc继承自oopDesc,oopDesc 的定义载 Hotspot 源码中的 oop.hpp 文件中 是 _mark和 _metadata
在普通实例对象中,oopDesc的定义包含两个成员,分别_mark 表示对象标记、属于markOop类型,也就是接下来要讲解的Mark World,它记录了对象和锁有关的信息 _metadata 表示类元信息,类元信息存储的是对象指向它的类元数据(Klass)的首地址,其中 Klass 表示普通指针、 _compressed_klass 表示压缩类指针

MarkWord

在Hotspot 中,markOop 的定义在 markOop.hpp 文件中,代码如下

在这里插入图片描述
Mark word 记录了对象和锁有关的信息,当某个对象被synchronized 关键字当成同步锁时,那么围绕这个锁的一系列操作都和Mark word有关系。Mark Word在32位虚拟机的长度是32bit、在64位虚拟机的长度是64bit。 Mark Word里面存储的数据会随着锁标志位的变化而变化,Mark Word 可能变化为存储以下5中情况.
在这里插入图片描述
为什么任何对象都可以实现锁
1. 首先,Java 中的每个对象都派生自 Object 类,而每个Java Object 在 JVM 内部都有一个 native 的 C++对象 oop/oopDesc 进行对应。
2. 线程在获取锁的时候,实际上就是获得一个监视器对象(monitor) ,monitor 可以认为是一个同步对象,所有的Java 对象是天生携带 monitor。在 hotspot 源码的 markOop.hpp 文件中,可以看到下面这段代码。
在这里插入图片描述
多个线程访问同步代码块时,相当于去争抢对象监视器修改对象中的锁标识,上面的代码中ObjectMonitor这个对象和线程争抢锁的逻辑有密切的关系 .

synchronized 锁的升级

在分析markword 时,提到了偏向锁、轻量级锁、重量级锁。在分析这几种锁的区别时,我们先来思考一个问题 使用锁能够实现数据的安全性,但是会带来性能的下降。不使用锁能够基于线程并行提升程序性能,但是却不能保证线程安全性。这两者之间似乎是没有办法达到既能满足性能也能满足安全性的要求。 hotspot 虚拟机的作者经过调查发现,大部分情况下,加锁的代码不仅仅不存在多线程竞争,而且总是由同一个线程多次获得。所以基于这样一个概率,是的synchronized在JDK1.6 之后做了一些优化,为了减少获得锁和释放锁带来的性能开销,引入了偏向锁、轻量级锁的概念。因此大家会发现在synchronized中,锁存在四种状态 分别是:无锁、偏向锁、轻量级锁、重量级锁; 锁的状态根据竞争激烈的程度从低到高不断升级。 

偏向锁的基本原理

前面说过,大部分情况下,锁不仅仅不存在多线程竞争,而是总是由同一个线程多次获得,为了让线程获取锁的代价更低就引入了偏向锁的概念。怎么理解偏向锁呢? 当一个线程访问加了同步锁的代码块时,会在对象头中存储当前线程的ID,后续这个线程进入和退出这段加了同步锁的代码块时,不需要再次加锁和释放锁。而是直接比较对象头里面是否存储了指向当前线程的偏向锁。如果相等表示偏向锁是偏向于当前线程的,就不需要再尝试获得锁了。

偏向锁的获取和撤销逻辑

1. 首先获取锁 对象的Markword,判断是否处于可偏向状态。( biased_lock=1、且 ThreadId 为空)。
2. 如果是可偏向状态,则通过CAS操作,把当前线程的ID写入到MarkWord 
a) 如果 cas 成功,那么markword 就会变成这样。表示已经获得了锁对象的偏向锁,接着执行同步代码块 
b) 如果 cas 失败,说明有其他线程已经获得了偏向锁,这种情况说明当前锁存在竞争,需要撤销已获得偏向锁的线程,并且把它持有的锁升级为轻量级锁(这个操作需要等到全局安全点,也就是没有线程在执行字节码)才能执行 
3. 如果是已偏向状态,需要检查 markword 中存储的ThreadID 是否等于当前线程的ThreadID 块 

偏向锁的撤销

a) 如果相等,不需要再次获得锁,可直接执行同步代码
b) 如果不相等,说明当前锁偏向于其他线程,需要撤销偏向锁并升级到轻量级锁 偏向锁的撤销并不是把对象恢复到无锁可偏向状态(因为偏向锁并不存在锁释放的概念),而是在获取偏向锁的过程中,发现cas 失败也就是存在线程竞争时,直接把被偏向的锁对象升级到被加了轻量级锁的状态。
对原持有偏向锁的线程进行撤销时,原获得偏向锁的线程有两种情况: 
1. 原获得偏向锁的线程如果已经退出了临界区,也就是同步代码块执行完了,那么这个时候会把对象头设置成无锁状态并且争抢锁的线程可以基于 CAS 重新偏向但前线程 
2. 如果原获得偏向锁的线程的同步代码块还没执行完,处于临界区之内,这个时候会把原获得偏向锁的线程升级为轻量级锁后继续执行同步代码块 在我们的应用开发中,绝大部分情况下一定会存在2个以的资源消耗。所以可以通过jvm参数 上的线程竞争,那么如果开启偏向锁,反而会提升获取锁UseBiasedLocking 来设置开启或关闭偏向锁。
**流程图分析**

在这里插入图片描述

轻量级锁的基本原理

轻量级锁的加锁和解锁逻辑
锁升级为轻量级锁之后,对象的Markword也会进行相应的的变化。升级为轻量级锁的过程: 
1. 线程在自己的栈桢中创建锁记录 LockRecord。 
2. 将锁对象的对象头中的MarkWord复制到线程的刚刚创建的锁记录中。 
3. 将锁记录中的Owner指针指向锁对象。 
4. 将锁对象的对象头的MarkWord替换为指向锁记录的指针。 

在这里插入图片描述
在这里插入图片描述

自旋锁

轻量级锁在加锁过程中,用到了自旋锁 所谓自旋,就是指当有另外一个线程来竞争锁时,这个线程会在原地循环等待,而不是把该线程给阻塞,直到那个获得锁的线程释放锁之后,这个线程就可以马上获得锁的。 注意,锁在原地循环的时候,是会消耗cpu的,就相当于在执行一个啥也没有的for循环。 
所以,轻量级锁适用于那些同步代码块执行的很快的场景,这样,线程原地等待很短的时间就能够获得锁了。 自旋锁的使用,其实也是有一定的概率背景,在大部分同步代码块执行的时间都是很短的。所以通过看似无异议的循环反而能提升锁的性能。 但是自旋必须要有一定的条件控制,否则如果一个线程执行同步代码块的时间很长,那么这个线程不断的循环反而会消耗CPU资源。默认情况下自旋的次数是10次, 可以通过 preBlockSpin来修改在JDK1.6 之后,引入了自适应自旋锁,自适应意味着自旋的次数不是固定不变的,而是根据前一次在同一个锁上自旋的时间以及锁的拥有者的状态来决定。 如果在同一个锁对象上,自旋等待刚刚成功获得过锁,并且持有锁的线程正在运行中,那么虚拟机就会认为这次自旋也是很有可能再次成功,进而它将允许自旋等待持续相对更长的时间。如果对于某个锁,自旋很少成功获得过,那在以后尝试获取这个锁时将可能省略掉自旋过程,直接阻塞线程,避免浪费处理器资源 

轻量级锁的解锁

轻量级锁的锁释放逻辑其实就是获得锁的逆向逻辑,通过CAS 操作把线程栈帧中的LockRecord 替换回到锁对象的MarkWord 中,如果成功表示没有竞争。如果失败,表示当前锁存在竞争,那么轻量级锁就会膨胀成为重量级锁 
**流程图分析** 

在这里插入图片描述

重量级锁的基本原理
当轻量级锁膨胀到重量级锁之后,意味着线程只能被挂起阻塞来等待被唤醒了。
**重量级锁的monitor**
加了同步代码块以后,在字节码中会看到一个monitorenter 和 monitorexit。 
每一个JAVA 对象都会与一个监视器monitor 关联,我们可以把它理解成为一把锁,当一个线程想要执行一段被synchronized 修饰的同步方法或者代码块时,该线程得先获取到synchronized修饰的对象对应的monitor。 monitorenter 表示去获得一个对象监视器。monitorexit表示释放monitor 监视器的所有权,使得其他被阻塞的线程可以尝试去获得这个监视器 
monitor 依赖操作系统的MutexLock(互斥锁)来实现的, 线程被阻塞后便进入内核(Linux)调度状态,这个会导致系统在用户态与内核态之间来回切换,严重影响锁的性能 。
重量级锁的加锁的基本流程

在这里插入图片描述

任意线程对Object(Object由synchronized保护)的访问,首先要获得Object的监视器。如果获取失败,线程进入同步队列,线程状态变为BLOCKED。当访问Object的前驱(获得了锁的线程)释放了锁,则该释放操作唤醒阻塞在同步队列中的线程,使其重新尝试对监视器的获取。 
回顾线程的竞争机制
再来回顾一下线程的竞争机制对于锁升级这块的一些基本流程。方便大家更好的理解 加入有这样一个同步代码块,存在Thread#1、Thread#2等多个线程 
synchronized (lock) { 
    // do something 
}
情况一:只有Thread#1会进入临界区; 
情况二:Thread#1和Thread#2交替进入临界区,竞争不激烈; 
情况三:Thread#1/Thread#2/Thread3… 同时进入临界区,竞争激烈

偏向锁
此时当Thread#1进入临界区时,JVM会将lockObject的对象头Mark Word的锁标志位设为“01”,同时会用CAS操作把Thread#1 的线程 ID记录到Mark Word 中,此时进入偏向模式。所谓“偏向”,指的是这个锁会偏向于Thread#1,若接下来没有其他线程进入临界区,则 Thread#1 再出入临界区无需再执行任何同步操作。也就是说,若只有Thread#1 会进入临界区,实际上只有Thread#1初次进入临界区时需要执行CAS操作,以后再出入临界区都不会有同步操作带来的开销。
轻量级锁
偏向锁的场景太过于理想化,更多的时候是 Thread#2 也会尝试进入临界区, 如果 Thread#2 也进入临界区但是级锁的方式来获取锁
重量级锁
Thread#1 还没有执行完同步代码块时,会暂停 Thread#1并且升级到轻量级锁。Thread#2通过自旋再次尝试以轻量如果Thread#1和Thread#2正常交替执行,那么轻量级锁基本能够满足锁的需求。但是如果Thread#1和Thread#2同时进入临界区,那么轻量级锁就会膨胀为重量级锁,意味着Thread#1 线程获得了重量级锁的情况下,Thread#2就会被阻塞。

Synchronized 结合 Java Object 对象中的 wait,notify,notifyAll

前面我们在讲synchronized的时候,发现被阻塞的线程什么时候被唤醒,取决于获得锁的线程什么时候执行完同步代码块并且释放锁。那怎么做到显示控制呢?我们就需要借助一个信号机制: 在 Object 对象中,提供了wait/notify/notifyall,可以用于控制线程的状态 

wait/notify/notifyall 基本概念

wait:表示持有对象锁的线程A准备释放对象锁权限,释放cpu资源并进入等待状态。 
notify:表示持有对象锁的线程A准备释放对象锁权限,通知 jvm 唤醒某个竞争该对象锁的线程 X。线程 A 
synchronized 代码执行结束并且释放了锁之后,线程X直接获得对象锁权限,其他竞争线程继续等待(即使线程X同步完毕,释放对象锁,其他竞争线程仍然等待,直至有新的notify ,notifyAll 被调用)。 
notifyAll:notifyall 和 notify 的区别在于,notifyAll 会唤醒所有竞争同一个对象锁的所有线程,当已经获得锁的线程A 释放锁之后,所有被唤醒的线程都有可能获得对象锁权限。
需要注意的是:三个方法都必须在synchronized 同步关键字 所 限定的作用域中调用,否则会报错java.lang.IllegalMonitorStateException ,意思是因为没有同步,所以线程对对象锁的状态是不确定的,不能调用这些方法。 另外,通过同步机制来确保线程从wait方法返回时能够感知到感知到notify线程对变量做出的修改。

wait/notify 的基本原理

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/390593.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

EasyRecovery软件有哪些版本?如何下载2024最新版本

EasyRecovery 是一款功能强大的数据恢复软件&#xff0c;适用于电脑上的数据恢复需求。以下是该软件的不同电脑版本及其主要特点&#xff1a; EasyRecovery Home&#xff08;家用版&#xff09;&#xff1a; 主要针对家庭用户&#xff0c;提供常规的数据恢复功能。可以恢复各种…

计算机毕业设计SSM基于的高校学习资源共享系统

项目运行 环境配置&#xff1a; Jdk1.8 Tomcat7.0 Mysql HBuilderX&#xff08;Webstorm也行&#xff09; Eclispe&#xff08;IntelliJ IDEA,Eclispe,MyEclispe,Sts都支持&#xff09;。 项目技术&#xff1a; vue mybatis Maven mysql5.7或8.0等等组成&#xff0c;B…

项目管理工具软件Maven趣闻

版权声明 本文原创作者&#xff1a;谷哥的小弟作者博客地址&#xff1a;http://blog.csdn.net/lfdfhl Maven这个单词来自于意第绪语&#xff08;Yiddish&#xff09;&#xff0c;这是一种与德语和希伯来语有密切关系的犹太民族语言。在这个语境中&#xff0c;Maven意为“知识的…

typescript环境搭建,及tsc命令优化

typescript typescript. 是一种由微软开发的 开源 、跨平台的编程语言。. 它是 JavaScript 的超集&#xff0c;最终会被编译为JavaScript代码。. TypeScript添加了可选的静态类型系统、很多尚未正式发布的ECMAScript新特性&#xff08;如装饰器 [1] &#xff09;。. 2012年10月…

面试:正确率能很好的评估分类算法吗

正确率&#xff08;accuracy&#xff09; 正确率是我们最常见的评价指标&#xff0c;accuracy (TPTN)/(PN)&#xff0c;正确率是被分对的样本数在所有样本数中的占比&#xff0c;通常来说&#xff0c;正确率越高&#xff0c;分类器越好。 不同算法有不同特点&#xff0c;在不同…

c++类和对象新手保姆级上手教学(上)

前言&#xff1a; c其实顾名思义就是c语言的升级版&#xff0c;很多刚学c的同学第一感觉就是比c语言难学很多&#xff0c;其实没错&#xff0c;c里的知识更加难以理解可以说杂且抽象&#xff0c;光是类和对象&#xff0c;看起来容易&#xff0c;但想完全吃透&#xff0c;真的挺…

开关电源电路主要元器件基础知识详解

在学习电子电路过程中&#xff0c;电源我们无法绕开的一个重要部分&#xff0c;很多时候&#xff0c;故障就出现在电源部分&#xff0c;特别是开关电源。开关电源电路主要是由熔断器、热敏电阻器、互感滤波器、桥式整流电路、滤波电容器、开关振荡集成电路、开关变压器、光耦合…

【旧文更新】【优秀毕设】人脸识别打卡/签到/考勤管理系统(OpenCV+最简基本库开发、可移植树莓派 扩展网络图像推流控制 验证码及Excel邮件发送等功能)

【旧文更新】【优秀毕设】人脸识别打卡/签到/考勤管理系统&#xff08;OpenCV最简基本库开发、可移植树莓派 扩展网络图像推流控制 验证码及Excel邮件发送等功能&#xff09; 文章目录 关于旧文新发毕设结构主页面验证码识别效果管理页面人脸信息采集管理实时数据更新签到结果…

JavaScript_00001_00000

contents 简介变量与数据类型自动类型转换强制类型转换 简介 变量与数据类型 根据变量定义的范围不同&#xff0c;变量有全局变量和局部变量之分。直接定义的变量是全局变量&#xff0c;全局变量可以被所有的脚本访问&#xff1b;在函数里定义的变量称为局部变量&#xff0c;…

人工智能学习与实训笔记(一):零基础理解神经网络

目录 一、什么是神经网络模型 二、机器学习的类型 2.1 监督学习 2.2 无监督学习 2.3 半监督学习 2.4 强化学习 三、网络模型结构基础 3.1 单层网络 ​编辑 3.2 多层网络 3.3 非线性多层网络 四、 回归问题实操&#xff1a;使用Python和NumPy实现波士顿房价预测任务 一…

京东护网面试题汇总

1 、JNI 函数在 java 中函数名为 com.didi.security.main,C 中的函数名是什么样的&#xff1f; com_didi_security_mian java.com.didi.security.main 2 、Frida 和 Xposed 框架&#xff1f; 3 、SSRF 利用方式&#xff1f; 4 、宏病毒&#xff1f; 5 、APP 加壳&a…

mysql 2-16

安全等于<> 最大最小LEAST,GREATEST BETWEEN AND 条件一是下限 IN LIKE关键字 转移字符 逻辑运算符 位运算符 排序数据 升序降序&#xff0c;默认升序 二级排序 8.0新特性 小拓展 多表查询 多表查询 别名 多表查询的分类 非等值连接 自连接 内连接与外连接 sql92实现外连…

Python iter函数

在Python编程中&#xff0c;iter()函数是一个非常重要且常用的内置函数&#xff0c;用于生成迭代器对象。迭代器是一种可以逐个访问数据元素的对象&#xff0c;可以用于遍历序列、集合以及自定义数据结构等。本文将深入探讨Python中的iter()函数&#xff0c;包括基本用法、可迭…

嵌入式——Flash(W25Q64)

目录 一、初识W25Q64 1. 基本认识 2. 引脚介绍 ​编辑 二、W25Q64特性 1. SPI模式 2. 双输出SPI方式 三、状态寄存器 1. BUSY位 2. WEL位 3. BP2、BP1、 BP0位 4. TB位 5. 保留位 6. SRP位 四、常用操作指令 1. 写使能指令&#xff08;06h&#xff09; 2. 写禁…

文件管理大师:深入解析Linux的文件与目录操控

目录 一、文件命名规则 1、可以使用哪些字符? 2、文件名的长度 3、Linux文件名大小写 4、Linux文件扩展名 二、文件管理命令 1、目录创建/删除 mkdir创建目录 直接创建文件夹 创建多个文件夹 递归创建写法 总结mkdir 删除空目录 2、文件创建、删除 touch创建文…

vue导出word文档(图文示例)

第076个 查看专栏目录: VUE 本文章目录 示例说明示例效果图导出的文件效果截图示例源代码参数说明&#xff1a;重要提示&#xff1a;API 参考网址 示例说明 在Vue中导出Word文档&#xff0c;可以使用第三方库file-saver和html-docx-js。首先需要安装这两个库&#xff1a; npm …

MySQL5.7升级到MySQL8.0的最佳实践分享

一、前言 事出必有因&#xff0c;在这个月的某个项目中&#xff0c;我们面临了一项重要任务&#xff0c;即每年一次的等保测评整改。这次测评的重点是Mysql的一些高危漏洞&#xff0c;客户要求我们无论如何必须解决这些漏洞。尽管我们感到无奈&#xff0c;但为了满足客户的要求…

CSS3学习(二)

目录&#xff1a; 1. 字体属性 1.1 字体系列 1.2 字体大小 1.3 字体粗细 1.4 文字样式 1.5 字体复合属性 1.6 总结 2 文本属性 2.1 文本颜色 2.2 对齐文本 2.3 装饰文本 2.4 文本缩进 2.5 行间距 2.6 总结 1. 字体属性 1.1 字体系列 使用font-family属性定义文…

解线性方程组(一)——克拉默法则求解(C++)

克拉默法则 解线性方程组最基础的方法就是使用克拉默法则&#xff0c;需要注意的是&#xff0c;该方程组必须是线性方程组。 假设有方程组如下&#xff1a; { a 11 x 1 a 12 x 2 ⋯ a 1 n x n b 1 a 21 x 1 a 22 x 2 ⋯ a 2 n x n b 2 ⋯ ⋯ ⋯ a n 1 x 1 a n 2 x 2…

Java集合 List接口

List接口操作 Java的List接口是Java集合框架中的一部分&#xff0c;它表示有序的集合。List接口提供了许多常用的方法&#xff0c;以下是其中的一些例子&#xff1a; 增加元素 add(E e)&#xff1a;将指定的元素插入此列表的末尾。 List<String> list new ArrayList…