GAN生成对抗性网络

一、GAN原理

出发点:机器学习中生成模型的问题

                无监督学习是机器学习和未来人工智能的突破点,生成模型是无监督学习的关键部分

特点:

  1. 不需要MCMC或者变分贝叶斯等复杂的手段,只需要在G和D中对应的多层感知机中运行反向传播或者梯度下降算法
  2. 模型通常使用神经网络,其拟合能力最好

G(Generator):用于捕获数据分布的生成模型(生成图像的网络);接收到随机的噪声z,通过噪声z生成图像。尽可能多地模拟、建模和学习真实数据的分布规律。

D(Discriminator):用于判别数据是真实数据还是生成数据(伪数据)的判别模型(判别图像真伪的网络):输入一张图像,输出代表其为真实图像的概率值,100%即判断该图像是真的。

训练过程:

        通过对抗性过程同时训练两个模型,训练过程中,生成器逐渐擅长创建更为真实的图像,鉴别器逐渐擅长判断真伪,当鉴别器没有办法判断图像真伪时,该训练过程达到平衡。

  • 动态博弈过程:G尽可能生成真实的图像欺骗判别网络D,D尽量区别G生成的图像和真实的图像
  • 博弈结果:理想情况下,达到纳什均衡点,G生成可以“以假乱真”的图像

D(x):D网络判断真实图片是否真实的概率,因为x本来就是真实的,所以该值越接近1越好

D(G(z)):D网络判断G生成的图片是否真实的概率

对于G:G希望自己生成的图片越接近真实越好,即G希望D(G(z))尽可能大,V(D, G)会变小,所以对于G是min_G

对于D:D的能力越强,D(x)越大,D(G(x))越小,V(D,G)会变大,所以对于D是求最大max_D

二、GAN框架

第一步训练D时,V(G, D)越大越好,所以加上梯度ascending

第二步训练G时,V(G, D)越小越好,所以减去梯度descending

整个训练过程交替进行

体系结构:

  • 传统生成模型的优化目标:数据的似然
  • GAN创新地使用另外一个优化目标:①引入判别模型②优化过程是在生成模型和判别模型之间找纳什均衡

三、GAN实现过程

1.前向传播阶段

模型输入:
        随机产生一个随机向量作为生成模型的输入数据,然后经过生成模型后产生一个新的向量,即为Fake Image

        从数据集中随机选择一张图片,将图片转化成向量,即为Real Image

模型输出:

        fake image和real image是判别网络的输入,根据输入的图片类型是Fake Image或Real Image将判别模型的输入数据的label标记为0或者1。即判别模型的输入类型为(xfake,0)或者(xreal,1)。

        经过判别网络后输出一个0到1之间的数,用来表示输入图片为真实图像的概率。

2.反向传播阶段—优化目标

①优化D

②优化G

3.损失函数

        希望生成样本和真实样本拥有相同的概率密度函数

        GAN的损失函数源自于二分类对数似然函数的交叉熵损失函数。第一项是使正样本的识别结果尽量为 1 ,第二项是使负样本的预测值尽量为 0 

损失函数:

4.迭代更新

得到损失函数后按照单个模型的更新方法进行修正

四、GAN特性

        采用对抗思想的原因:评估一个生成样本的质量,是一个很难量化的指标。对抗思想,把评估生成样本的质量的任务交给一个判别器模型去做

特点:

        传统模式相比,有两种不同的网络,采用对抗训练方法

缺点:

        训练GAN需要达到Nash均衡,有时候可以通过梯度下降方法实现,有时候不能;

        GAN不适用于处理离散数据,如文本;

        GAN存在训练不稳定、梯度消失和模态崩溃等问题

五、GAN应用

        用于无监督学习和半监督学习

        GAN与强化学习相结合

        图像样式转换、图像降噪和恢复、图像超分辨率

        计算机视觉,图像、文本、语音,或者任何含有规律的数据合成

        用于分类领域:将判别器替换为分类器,执行多个分类任务

六、其他

①早停法(Early Stopping):

        生成器或鉴别器损失突然增加或减少

        损失函数随机上升或下降,可能得到生成器的损失远远高于判别器的损失

②处理Mode Collapse(模式坍塌|生成器”崩溃”,总是将每一个输入的隐向量生成单一的样本)问题时,尝试使用较小的学习率,并从头开始训练

③添加噪声:在真实数据和合成数据中添加噪声,提高判别器的训练难度有利于提高系统的整体稳定性

④标签平滑:将标签值设置成一个低一些的值,阻止判别器对分类标签过于确信

⑤多尺度梯度(处理不太小的尺度时使用):由于两个网络之间的多个跳连接,梯度流从判别器流向生成器,和传统的用于语义分割的U-Net类似

⑥双时间尺度更新规则:使用不同的学习速率;为判别器选择一个更高的学习率(生成器必须用更小的更新幅度来欺骗判别器,不会选择快速、不精确和不现实的方式赢得博弈)。使用TTUR时,生成器有更大的损失量

⑦谱归一化:应用于卷积核的一种特殊的归一化,可以极大地提高训练的稳定性

参考链接:GAN-生成对抗性神经网络 - 知乎

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/389001.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

红队打靶练习:HACK ME PLEASE: 1

信息收集 1、arp ┌──(root㉿ru)-[~/kali] └─# arp-scan -l Interface: eth0, type: EN10MB, MAC: 00:0c:29:69:c7:bf, IPv4: 192.168.61.128 Starting arp-scan 1.10.0 with 256 hosts (https://github.com/royhills/arp-scan) 192.168.61.2 00:50:56:f0:df:20 …

[BIZ] - 1.金融交易系统特点

1. 典型数据汇总 数据 说明 新增数据量(条/天) Qps(条/s) 消息大小(Byte) 实时性 可丢失性 可恢复性 实时行情 1.使用场景:交易,报价,策略验证; 2.冷热分离:彭博行情/其他行情;黄金&期货行情/…

Panalog 日志审计系统 libres_syn_delete.php 前台RCE漏洞复现

0x01 产品简介 Panalog是一款日志审计系统,方便用户统一集中监控、管理在网的海量设备。 0x02 漏洞概述 Panalog日志审计系统 libres_syn_delete.php接口处存在远程命令执行漏洞,攻击者可执行任意命令,接管服务器权限。 0x03 影响范围 version <= MARS r10p1Free 0…

【教3妹学编程-算法题】将数组分成最小总代价的子数组 II

2哥 : 叮铃铃&#xff0c;3妹&#xff0c;过年干嘛呢&#xff0c;是不是逛吃逛吃&#xff0c;有没有长胖呢。 3妹&#xff1a;切&#xff0c;我妈张罗着要给我相亲呢。 2哥 : 相亲&#xff1f;哈哈哈哈 3妹&#xff1a;别笑了&#xff0c;我妈说跟我年龄相等的人都已经孩子上小…

iptables防火墙、filter表控制、扩展匹配、使用iptables配置网络型防火墙、NAT原理、配置SNAT

目录 iptables 防火墙filter表 filter中的三条链 环境准备 iptables操作 验证FORWARD链 准备环境 配置FORWARD链 NAT 配置SNAT iptables iptables有多种功能&#xff0c;每一种功能都用一张表来实现最常用的功能是防火墙和NAT从RHEL7开始&#xff0c;默认的防火墙为…

.NET Core WebAPI中使用swagger版本控制,添加注释

一、效果 二、实现步骤 在代码中添加注释 在项目属性中生成API文档 在Program中注册Swagger服务并配置文档信息 // 添加swagger注释 builder.Services.AddSwaggerGen(x > {x.SwaggerDoc("v1", new OpenApiInfo { Title "Swagger标题", Version "…

STM32F1 - 中断系统

Interrupt 1> 硬件框图2> NVIC 中断管理3> EXTI 中断管理3.1> EXTI与NVIC3.2> EXTI内部框图 4> 外部中断实验4.1> 实验概述4.2> 程序设计 5> 总结 1> 硬件框图 NVIC&#xff1a;Nested Vectored Interrupt Controller【嵌套向量中断控制器】 管理…

springboot192中国陕西民俗网

简介 【毕设源码推荐 javaweb 项目】基于springbootvue 的中国陕西民俗网 适用于计算机类毕业设计&#xff0c;课程设计参考与学习用途。仅供学习参考&#xff0c; 不得用于商业或者非法用途&#xff0c;否则&#xff0c;一切后果请用户自负。 看运行截图看 第五章 第四章 获取…

蓝桥杯:C++排列与组合

排列是暴力枚举时的常见操作。有以下两种情况。 C的 next_permutation()是全排列函数&#xff0c;只能输出序列中所有元素的全排列。 本节将给出手写排列和组合的代码。因为在很多场合中不能使用系统自带的排列函数&#xff0c;所以需要自己编写。 全排列函数&#xff1a;nex…

《合成孔径雷达成像算法与实现》Figure6.18

% rho_r c/(2*Fr)而不是rho_r c/(2*Bw) % Hsrcf exp函数里忘记乘pi了 clc clear close all参数设置 距离向参数设置 R_eta_c 20e3; % 景中心斜距 Tr 2.5e-6; % 发射脉冲时宽 Kr 20e12; % 距离向调频率 alpha_os_r 1.2; …

如何使用六图一表七种武器

六图一表七种武器用于质量管理&#xff1a; 描述当遇到问题时应该用那张图来解决&#xff1a; 一、如果题目说出了质量问题需要找原因&#xff1f; 解&#xff1a;用因果图&#xff0c;因果图也称石川图或鱼骨图 二、如果要判断过程是否稳定受控&#xff1f; 解&#xff1a…

【zabbix】(五)-自定义监控项:MySQL主从状态-自动告警

一 查看主从状态 二 在zabbix-agent端配置监控脚本 2.1 首先定义监控项 [rootmysql-112 conf]# mysql -uroot -pLXYlxy2:024.#8u} -e "show slave status\G" | grep -w Slave_IO_Running | awk {print $2} mysql: [Warning] Using a password on the command line…

UI设计常见风格(1):一文读懂九个,教你如何辨识。

Hello&#xff0c;我是大千UI工场&#xff0c;设计风格是我们新开辟的栏目&#xff0c;上次讲了毛玻璃风格、辨识方法、应用场景、运用方法等&#xff0c;很受大家欢迎&#xff0c;本次带来常见的风格及辨识&#xff0c;让大家有个总览&#xff0c;以后会逐个讲解的&#xff0c…

Python一些可能用的到的函数系列124 GlobalFunc

说明 GlobalFunc是算网的下一代核心数据处理基础。 算网是一个分布式网络&#xff0c;为了能够实现真的分布式计算&#xff08;加快大规模任务执行效率&#xff09;&#xff0c;以及能够在很长的时间内维护不同版本的计算方法&#xff0c;需要这样一个对象/服务来支撑。Globa…

学法减分线上考试答案查找?分享九个搜题直接出答案的软件 #媒体#媒体#笔记

在信息爆炸的时代&#xff0c;选择适合自己的学习辅助工具和资料&#xff0c;能够提供更高效、便捷和多样化的学习方式。 1.试题猪 这是个微信公众号 一款聚合了好多款搜题软件的公众号&#xff0c;对话框可以直接搜题&#xff0c;题库好像挺多的&#xff0c;一次性能出好多…

计算机二级数据库之数据模型(三层相关的结构)

数据模型 模型的概念 模型的介绍模型是对现实世界特征的模拟和抽象&#xff0c; 数据模型的概念&#xff1a; 数据模型是对现实世界中数据特征的抽象&#xff0c;描述的是数据的共性。 数据模型是用来在数据库中抽象、表示和处理现实世界中的数据和信凹。 其相关的共同特…

阿里云幻兽帕鲁服务器中据点帕鲁数量上限是修改哪个参数?

在阿里云的计算巢管理中&#xff0c;找到你的这台部署幻兽帕鲁的服务器实例&#xff0c;选择右上角的“修改游戏配置” 然后选择“基地内工作帕鲁的最大数量”改成20 不过也有同学说更改上面的数字&#xff0c;根本不起作用。 参考资料&#xff1a;大多数人现在都知道&#xf…

AGV|RGV基本概念及导航分类与差异

AGV是自动导引运输车&#xff0c;装备采用电磁或光学等自动导引装置&#xff0c;能够沿规定的导引路径行驶&#xff0c;具有安全保护以及各种移载功能的运输车。其导航方式主要分磁条|磁钉导航、激光导航、激光反光板、激光自然导航、二维码导航、惯性导航等方式&#xff0c;广…

【51单片机】利用STC-ISP软件工具【定时器计算器】配置【定时器】教程(详细图示)(AT89C52)

前言 大家好吖&#xff0c;欢迎来到 YY 滴单片机系列 &#xff0c;热烈欢迎&#xff01; 本章主要内容面向接触过单片机的老铁 主要内容含&#xff1a; 欢迎订阅 YY滴C专栏&#xff01;更多干货持续更新&#xff01;以下是传送门&#xff01; YY的《C》专栏YY的《C11》专栏YY的…

OpenAI全新发布文生视频模型Sora - 现实,不存在了

OpenAI&#xff0c;发他们的文生视频大模型&#xff0c;Sora了。。。。。 而且&#xff0c;是强到&#xff0c;能震惊我一万年的程度。。。 https://openai.com/sora 如果非要用三个词来总结Sora&#xff0c;那就是“60s超长长度”、“单视频多角度镜头”和“世界模型” &am…