[BIZ] - 1.金融交易系统特点

1. 典型数据汇总

数据

说明

新增数据量(条/天)

Qps(条/s)

消息大小(Byte)

实时性

可丢失性

可恢复性

实时行情

1.使用场景:交易,报价,策略验证;

2.冷热分离:彭博行情/其他行情;黄金&期货行情/固守行情

5亿

3万

1.5K

< 5ms

< 5%

N

风控数据

容易造成BigKey问题

数据事后风控

500万

3万

50K

分钟级别

可丢失

N

监控数据

数据种类:

1.中间件监控

2.应用监控

10亿

5万

215

亚分钟级别

可丢失

N

excel报价数据

做市报价

3亿

2万

3M

亚秒

可丢失

N

订单数据

含做市

1千万

1万

1.5K

< 3ms

不可丢失

Y

权限数据

权限控制粒度小

容易造成HotKey问题

1千万5万215< 1ms不可丢失Y

    通过上表,我们可以知道,金融交易系统的数据具有以下特点:高性能,高并发,数据量极大...

2. 海量数据

    交易系统的数据量特大,主要来自以下几种类型的数据。

2.1 行情

    行情是交易系统最为重要的数据,交易就是在不断变化的行情中寻找时机来实现盈利的。海量的行情主要分成两种,一种是tick数据(也叫逐笔行情),例如彭博行情数据,它会将每一笔交易的行情都发布出来,这种数据量巨大,一天就有4亿多条数据;另一种是每隔500ms发布一次行情,这种相对来说数据量少很多,一天大概1亿条左右。再加上各家公司会根据需求对行情进行进一步的加工,如聚合多种行情形成的聚合行情。数据量一天就会达到5亿多条。   

2.2 报价

    作为做市商,需要根据行情,通过一定的算法(如跟随当前行情报价、根据设定的差值及当前行情报价,根据行情计算曲线,然后报价)对外报价。报价数据一天的数据量能达到3亿条。

2.3 监控

    监控数据主要包括中间件的监控数据,服务实例的内存和CPU监控数据等,数据量和QPS非常高。一天的数据量能达到10亿条,在进行监控图标展示时,必须进行采样处理。

3. 高并发

3.1 行情

    对于行情而言,QPS基本保持在3万/s以上,高峰时段(国内交易时间9:00 - 11:30左右,国外交易时间21:.00 - 23:00)的QPS能达到3万/s。

3.2 权限

    对于交易高峰时段(手动单,电子单,做市,量化),会造成权限数据的访问频繁达到5万/s。主要是读高峰,权限写操作比较少,而且一般在开始交易前就已经完成。

3.3 监控

    监控数据的峰值能达到5万/s,主要是写操作并发高。

3.4 风控

    风控数据分成两种,一种是partial batch,数据量少,时间间隔短,例如每10s计算一次;另一种是full batch,会根据当前行情全量计算一次所有产品的风控指标数据,例如每30min计算一次。由于full batch的计算量大,而且希望结果能够一次性给到交易员查看,议事交易员能够看到不同产品的统一切面数据,导致风控数据的瞬间并发值特别高,达到3万/s。

3.5 报价

    由于做市交易和量化交易的存在,导致报价数据量特别大,峰值能够达到2万/s。

3.6 订单

    交易方式的多样化,如手工单,电子单,做市交易以及量化交易,再加上订单策略,如冰山策略等,导致订单的并发量在高峰时可以达到1万/s。

4. 高性能

    交易系统的高性能主要体现在延时性上。

4.1 行情

4.1.1 实时行情

    实时行情分量两大类,一类是当前会进行交易的产品行情数据,另一类是计划以后会进行交易,当前只是用于策略测试的行情数据。

    对于会进行交易的产品行情数据,要求交易所或数据商的数据进入交易系统后,必须在3ms以内推送到各个下游服务(其实,订阅方根据业务逻辑也会对延时有不同的要求,可以进一步细分,依次来降低MQ的压力,这些待MQ的章节进行介绍)。

    对于当前只是用于策略测试的行情数据,对于行情的延时没有太大的要求,一般卡在亚分钟级别即可。

    行情数据的流向图见下图:

    行情的延时是从行情数据进入行情接入服务后开始计算,行情接入服务接收到交易所推送的行情后,需要将行情进行加工和包装,让其符合内部的使用场景,例如数据校验、与对应的市场参考数据匹配、与其他行情数据进行聚合、填充必要标识...,最后封装成统一的对象供下游使用。

    行情接入服务处理完毕之后,将行情发布到MQ,由MQ推送给下游的各个订阅服务。

    整个交易系统的内部网络环境如下:内部的网络延时大概是在50us,带宽是万兆网。延时要求小于5ms。从消息进入行情接入服务开始计算,至消息进入下游订阅服务为止。耗时主要发生在行情的接入服务,以及消息在MQ中的主从复制和消息路由。

    行情数据对延时的要求还一定程度上受交易品种的影响,例如,对于黄金和期货产品而言,由于玩家较多,行情数据的延时对成交影响很多,要求延时在3ms以内;而对于固收类产品,由于玩家少,行情数据的延时对成交的影响也弱的多,可以将延时放宽到5ms。

4.1.2 历史行情

    历史行情主要用于策略研究和曲线拟合。两种业务场景都只要求近三年的数据,因此三年之前的数据可以直接进行存档。对于三年内的数据,曲线拟合要求数据延时在30s以内,而策略研究,通常没有太大的限制,只要不导致请求超时即可,我们常按照分钟级别的要求进行设置。

4.2 订单

    交易所通常按照价格优先,时间优先的规则进行撮合,因此订单早一刻到达交易所,成交的概率就更大。

    订单的延时从订单生成时刻起算,直到将交易所ack为止。这中间主要经历订单校验、权限检查、风控检查、策略拆单、订单路由等步骤,然后由外联系统将订单发送到交易所。整个过程的耗时不可超过3ms。

    其实,订单还可以分类,例如指定交易对手方的交易,通常对延时不太敏感;对于RTF/RFQ模式的交易,对延时也要求不高。

4.3 权限

    由于订单的下发处理过程中,首先就是要做权限校验,因此系统对权限的延时i性能要求更高,一般权限的延时不能超过1ms。

    同时权限有一些自身的特点,例如并发性极高,因此,一定要区分不同场景对权限延时的要求,区分对待。

5. 高可用

    金融交易系统:稳是第一要务,稳是第一要务,稳是第一要务。

    为了提高可用性,金融行业的一个惯例做法是每周重启系统,并不是对可用性没有要求,而正是为了在交易时间段不出现不可用状态。

    而且需要避免单节点故障,搭建同城双活,异地多活架构。

6. 消息体大

    小的消息在几百个字节,大的数据可以达到3-5M。大消息体的消息会对序列化、网络传输、数据落盘产生非常大的影响。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/388998.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Panalog 日志审计系统 libres_syn_delete.php 前台RCE漏洞复现

0x01 产品简介 Panalog是一款日志审计系统,方便用户统一集中监控、管理在网的海量设备。 0x02 漏洞概述 Panalog日志审计系统 libres_syn_delete.php接口处存在远程命令执行漏洞,攻击者可执行任意命令,接管服务器权限。 0x03 影响范围 version <= MARS r10p1Free 0…

【教3妹学编程-算法题】将数组分成最小总代价的子数组 II

2哥 : 叮铃铃&#xff0c;3妹&#xff0c;过年干嘛呢&#xff0c;是不是逛吃逛吃&#xff0c;有没有长胖呢。 3妹&#xff1a;切&#xff0c;我妈张罗着要给我相亲呢。 2哥 : 相亲&#xff1f;哈哈哈哈 3妹&#xff1a;别笑了&#xff0c;我妈说跟我年龄相等的人都已经孩子上小…

iptables防火墙、filter表控制、扩展匹配、使用iptables配置网络型防火墙、NAT原理、配置SNAT

目录 iptables 防火墙filter表 filter中的三条链 环境准备 iptables操作 验证FORWARD链 准备环境 配置FORWARD链 NAT 配置SNAT iptables iptables有多种功能&#xff0c;每一种功能都用一张表来实现最常用的功能是防火墙和NAT从RHEL7开始&#xff0c;默认的防火墙为…

.NET Core WebAPI中使用swagger版本控制,添加注释

一、效果 二、实现步骤 在代码中添加注释 在项目属性中生成API文档 在Program中注册Swagger服务并配置文档信息 // 添加swagger注释 builder.Services.AddSwaggerGen(x > {x.SwaggerDoc("v1", new OpenApiInfo { Title "Swagger标题", Version "…

STM32F1 - 中断系统

Interrupt 1> 硬件框图2> NVIC 中断管理3> EXTI 中断管理3.1> EXTI与NVIC3.2> EXTI内部框图 4> 外部中断实验4.1> 实验概述4.2> 程序设计 5> 总结 1> 硬件框图 NVIC&#xff1a;Nested Vectored Interrupt Controller【嵌套向量中断控制器】 管理…

springboot192中国陕西民俗网

简介 【毕设源码推荐 javaweb 项目】基于springbootvue 的中国陕西民俗网 适用于计算机类毕业设计&#xff0c;课程设计参考与学习用途。仅供学习参考&#xff0c; 不得用于商业或者非法用途&#xff0c;否则&#xff0c;一切后果请用户自负。 看运行截图看 第五章 第四章 获取…

蓝桥杯:C++排列与组合

排列是暴力枚举时的常见操作。有以下两种情况。 C的 next_permutation()是全排列函数&#xff0c;只能输出序列中所有元素的全排列。 本节将给出手写排列和组合的代码。因为在很多场合中不能使用系统自带的排列函数&#xff0c;所以需要自己编写。 全排列函数&#xff1a;nex…

《合成孔径雷达成像算法与实现》Figure6.18

% rho_r c/(2*Fr)而不是rho_r c/(2*Bw) % Hsrcf exp函数里忘记乘pi了 clc clear close all参数设置 距离向参数设置 R_eta_c 20e3; % 景中心斜距 Tr 2.5e-6; % 发射脉冲时宽 Kr 20e12; % 距离向调频率 alpha_os_r 1.2; …

如何使用六图一表七种武器

六图一表七种武器用于质量管理&#xff1a; 描述当遇到问题时应该用那张图来解决&#xff1a; 一、如果题目说出了质量问题需要找原因&#xff1f; 解&#xff1a;用因果图&#xff0c;因果图也称石川图或鱼骨图 二、如果要判断过程是否稳定受控&#xff1f; 解&#xff1a…

【zabbix】(五)-自定义监控项:MySQL主从状态-自动告警

一 查看主从状态 二 在zabbix-agent端配置监控脚本 2.1 首先定义监控项 [rootmysql-112 conf]# mysql -uroot -pLXYlxy2:024.#8u} -e "show slave status\G" | grep -w Slave_IO_Running | awk {print $2} mysql: [Warning] Using a password on the command line…

UI设计常见风格(1):一文读懂九个,教你如何辨识。

Hello&#xff0c;我是大千UI工场&#xff0c;设计风格是我们新开辟的栏目&#xff0c;上次讲了毛玻璃风格、辨识方法、应用场景、运用方法等&#xff0c;很受大家欢迎&#xff0c;本次带来常见的风格及辨识&#xff0c;让大家有个总览&#xff0c;以后会逐个讲解的&#xff0c…

Python一些可能用的到的函数系列124 GlobalFunc

说明 GlobalFunc是算网的下一代核心数据处理基础。 算网是一个分布式网络&#xff0c;为了能够实现真的分布式计算&#xff08;加快大规模任务执行效率&#xff09;&#xff0c;以及能够在很长的时间内维护不同版本的计算方法&#xff0c;需要这样一个对象/服务来支撑。Globa…

学法减分线上考试答案查找?分享九个搜题直接出答案的软件 #媒体#媒体#笔记

在信息爆炸的时代&#xff0c;选择适合自己的学习辅助工具和资料&#xff0c;能够提供更高效、便捷和多样化的学习方式。 1.试题猪 这是个微信公众号 一款聚合了好多款搜题软件的公众号&#xff0c;对话框可以直接搜题&#xff0c;题库好像挺多的&#xff0c;一次性能出好多…

计算机二级数据库之数据模型(三层相关的结构)

数据模型 模型的概念 模型的介绍模型是对现实世界特征的模拟和抽象&#xff0c; 数据模型的概念&#xff1a; 数据模型是对现实世界中数据特征的抽象&#xff0c;描述的是数据的共性。 数据模型是用来在数据库中抽象、表示和处理现实世界中的数据和信凹。 其相关的共同特…

阿里云幻兽帕鲁服务器中据点帕鲁数量上限是修改哪个参数?

在阿里云的计算巢管理中&#xff0c;找到你的这台部署幻兽帕鲁的服务器实例&#xff0c;选择右上角的“修改游戏配置” 然后选择“基地内工作帕鲁的最大数量”改成20 不过也有同学说更改上面的数字&#xff0c;根本不起作用。 参考资料&#xff1a;大多数人现在都知道&#xf…

AGV|RGV基本概念及导航分类与差异

AGV是自动导引运输车&#xff0c;装备采用电磁或光学等自动导引装置&#xff0c;能够沿规定的导引路径行驶&#xff0c;具有安全保护以及各种移载功能的运输车。其导航方式主要分磁条|磁钉导航、激光导航、激光反光板、激光自然导航、二维码导航、惯性导航等方式&#xff0c;广…

【51单片机】利用STC-ISP软件工具【定时器计算器】配置【定时器】教程(详细图示)(AT89C52)

前言 大家好吖&#xff0c;欢迎来到 YY 滴单片机系列 &#xff0c;热烈欢迎&#xff01; 本章主要内容面向接触过单片机的老铁 主要内容含&#xff1a; 欢迎订阅 YY滴C专栏&#xff01;更多干货持续更新&#xff01;以下是传送门&#xff01; YY的《C》专栏YY的《C11》专栏YY的…

OpenAI全新发布文生视频模型Sora - 现实,不存在了

OpenAI&#xff0c;发他们的文生视频大模型&#xff0c;Sora了。。。。。 而且&#xff0c;是强到&#xff0c;能震惊我一万年的程度。。。 https://openai.com/sora 如果非要用三个词来总结Sora&#xff0c;那就是“60s超长长度”、“单视频多角度镜头”和“世界模型” &am…

一周学会Django5 Python Web开发-项目配置settings.py文件-资源文件配置

锋哥原创的Python Web开发 Django5视频教程&#xff1a; 2024版 Django5 Python web开发 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili2024版 Django5 Python web开发 视频教程(无废话版) 玩命更新中~共计17条视频&#xff0c;包括&#xff1a;2024版 Django5 Python we…

深度学习之梯度下降算法

梯度下降算法 梯度下降算法数学公式结果 梯度下降算法存在的问题随机梯度下降算法 梯度下降算法 数学公式 这里案例是用梯度下降算法&#xff0c;来计算 y w * x 先计算出梯度&#xff0c;再进行梯度的更新 import numpy as np import matplotlib.pyplot as pltx_data [1.0,…