石子合并+环形石子合并+能量项链+凸多边形的划分——区间DP

一、石子合并 (经典例题)

设有 N 堆石子排成一排,其编号为 1,2,3,…,N。
每堆石子有一定的质量,可以用一个整数来描述,现在要将这 N 堆石子合并成为一堆。
每次只能合并相邻的两堆,合并的代价为这两堆石子的质量之和,合并后与这两堆石子相邻的石子将和新堆相邻,合并时由于选择的顺序不同,合并的总代价也不相同。
例如有 4 堆石子分别为 1 3 5 2, 我们可以先合并 1、2 堆,代价为 4,得到 4 5 2, 又合并 1、2 堆,代价为 9,得到 9 2 ,再合并得到 11,总代价为 4+9+11=24;
如果第二步是先合并 2、3 堆,则代价为 7,得到 4 7,最后一次合并代价为 11,总代价为 4+7+11=22。

问题是:找出一种合理的方法,使总的代价最小,输出最小代价。

输入
第一行一个数 N 表示石子的堆数 N (1 ≤ N ≤ 300)。
第二行 N 个数,表示每堆石子的质量(均不超过 1000)。

输出
输出一个整数,表示最小代价。

Input
4
1 3 5 2

Output
22
解析:
用一个状态表示一个区间,f[i][j] 表示将第 i 堆石子到第 j 堆石子合并成一堆石子的合并方式的集合。
状态转移:
例如,将 区间 [i,j] 分为 [i,k] 和 [k+1,j] ,枚举 k 在区间[i,j]的位置就能找到最小代价使得 合并这两个区间的代价最小,即 f[i][k]+f[k+1,j] 的值最小,再加上一个第 i 堆到第 j 堆的总重量即可。
因为在计算状态的时候,得保证在这个状态之前的状态已经计算完毕,所以可以采用循环区间长度从小到大的方式,进行计算。

#include <bits/stdc++.h>
using namespace std;
#define int long long
#define endl '\n'
#define ios ios::sync_with_stdio(false),cin.tie(nullptr),cout.tie(nullptr);
int gcd(int a,int b) { return b? gcd(b,a%b) : a; }
typedef pair<int,int> PII;
const double PI=acos(-1.0);
const int N=310;
int n;
int s[N];
int f[N][N];
void solve()
{
    cin>>n;
    for (int i=1;i<=n;i++) cin>>s[i];
    for (int i=1;i<=n;i++) s[i] +=s[i-1];
    
    for (int len=1;len<=n;len++)
    for (int i=1;i+len-1<=n;i++)
    {
        int l=i,r=i+len-1;
        if(len!=1) f[l][r]=2e9;                             //因为当len=1时,只有一堆石子,不需要合并,代价为0
        for (int k=l;k<r;k++)
        f[l][r]=min(f[l][r],f[l][k]+f[k+1][r]+s[r]-s[l-1]);
    }
    
    cout<<f[1][n];
}
signed main()
{
    ios;
    int T=1;
    //cin>>T;
    while (T--) solve();
    return 0;
}

 

二、 环形石子合并 (加个环)

将 n 堆石子绕圆形操场排放,现要将石子有序地合并成一堆。
规定每次只能选相邻的两堆合并成新的一堆,并将新的一堆的石子数记做该次合并的得分。
请编写一个程序,读入堆数 n 及每堆的石子数,并进行如下计算:
选择一种合并石子的方案,使得做 n−1 次合并得分总和最大。
选择一种合并石子的方案,使得做 n−1 次合并得分总和最小。

输入
第一行包含整数 n (1 ≤ n ≤ 200),表示共有 n 堆石子。
第二行包含 n 个整数,分别表示每堆石子的数量。

输出
共两行,第一行为合并得分总和最小值,第二行为合并得分总和最大值。

Input
4
4 5 9 4

Output
43
54

解析:
与上一题的石子合并的想法基本相似,不同的是这道题的石堆的摆放方式是环式的。
在上道题的基础上,将这个环断开,变成一条链,枚举每个断点。
不过直接枚举的话,时间复杂度是 n^4,超时了。
我们可以将数组读入,再将数组复制一遍,再接到这个数组上。
这样时间复杂度就降下来了,时间复杂度在 n^3。
注意:在做这种环式的题,就可以多想一想这样的方法

#include <bits/stdc++.h>
using namespace std;
#define int long long
#define endl '\n'
#define ios ios::sync_with_stdio(false),cin.tie(nullptr),cout.tie(nullptr);
int gcd(int a,int b) { return b? gcd(b,a%b) : a; }
typedef pair<int,int> PII;
const double PI=acos(-1.0);
const int N=410;
int n;
int a[N],s[N];
int f[N][N],g[N][N];
void solve()
{
    cin>>n;
    for (int i=1;i<=n;i++) cin>>a[i],a[i+n]=a[i];
    for (int i=1;i<=2*n;i++) s[i]=s[i-1]+a[i];
    
    for (int len=1;len<=n;len++)                //一层循环枚举区间长度
    for (int i=1;i+len-1<=2*n;i++)              //二层循环枚举区间的左右端点
    {
        int l=i,r=i+len-1;
        if (len!=1) f[l][r]=2e9,g[l][r]=-2e9;
        for (int k=l;k<r;k++)                   //状态转移
        {
            f[l][r]=min(f[l][r],f[l][k]+f[k+1][r]+s[r]-s[l-1]);
            g[l][r]=max(g[l][r],g[l][k]+g[k+1][r]+s[r]-s[l-1]);
        }
    }
    
    int minx=2e9,maxx=-2e9;                     //找到最小值,最大值
    for (int i=1;i<=n;i++) 
    {
        minx=min(minx,f[i][i+n-1]);
        maxx=max(maxx,g[i][i+n-1]);
    }
    
    cout<<minx<<endl<<maxx<<endl;
}
signed main()
{
    ios;
    int T=1;
    //cin>>T;
    while (T--) solve();
    return 0;
}

三、能量项链 (跟上个题一样)

在 Mars 星球上,每个 Mars 人都随身佩带着一串能量项链,在项链上有 N 颗能量珠。
能量珠是一颗有头标记与尾标记的珠子,这些标记对应着某个正整数。
并且,对于相邻的两颗珠子,前一颗珠子的尾标记一定等于后一颗珠子的头标记。
因为只有这样,通过吸盘(吸盘是 Mars 人吸收能量的一种器官)的作用,这两颗珠子才能聚合成一颗珠子,同时释放出可以被吸盘吸收的能量。

如果前一颗能量珠的头标记为 m,尾标记为 r,后一颗能量珠的头标记为 r,尾标记为 n,则聚合后释放的能量为 m×r×n(Mars 单位),新产生的珠子的头标记为 m,尾标记为 n。
需要时,Mars 人就用吸盘夹住相邻的两颗珠子,通过聚合得到能量,直到项链上只剩下一颗珠子为止。
显然,不同的聚合顺序得到的总能量是不同的,请你设计一个聚合顺序,使一串项链释放出的总能量最大。

例如:设 N=4,4 颗珠子的头标记与尾标记依次为 (2,3)(3,5)(5,10)(10,2)。
我们用记号 ⊕ 表示两颗珠子的聚合操作,(j⊕k) 表示第 j,k 两颗珠子聚合后所释放的能量。则
第 4、1 两颗珠子聚合后释放的能量为:(4⊕1)=10×2×3=60。
这一串项链可以得到最优值的一个聚合顺序所释放的总能量为 ((4⊕1)⊕2)⊕3)=10×2×3+10×3×5+10×5×10=710。

输入
输入的第一行是一个正整数 N (4 ≤ N ≤ 100),表示项链上珠子的个数。
第二行是 N 个用空格隔开的正整数,所有的数均不超过 1000,第 i 个数为第 i 颗珠子的头标记,当 i<N 时,第 i 颗珠子的尾标记应该等于第 i+1 颗珠子的头标记,第 N 颗珠子的尾标记应该等于第 1 颗珠子的头标记。
至于珠子的顺序,你可以这样确定:将项链放到桌面上,不要出现交叉,随意指定第一颗珠子,然后按顺时针方向确定其他珠子的顺序。

输出
输出只有一行,是一个正整数 E (1 ≤ E ≤ 2e9),为一个最优聚合顺序所释放的总能量。

Input
4
2 3 5 10

Output
710

解析:
跟上一题一样,纯套路。

//代码一:开个结构体存储头和尾,相当于一个点,就跟上道题一模一样了
#include <bits/stdc++.h>
using namespace std;
#define int long long
#define endl '\n'
#define ios ios::sync_with_stdio(false),cin.tie(nullptr),cout.tie(nullptr);
int gcd(int a,int b) { return b? gcd(b,a%b) : a; }
typedef pair<int,int> PII;
const double PI=acos(-1.0);
const int N=400;
struct node
{
    int x,y;
}str[N];
int n;
int a[N];
int f[N][N];
void solve()
{
    cin>>n;
    for (int i=1;i<=n;i++) cin>>a[i];
    for (int i=1;i<=n;i++)
    {
        if (i==1)  str[i]={a[n],a[i]};
        else str[i]={a[i-1],a[i]};
        str[i+n]=str[i];
    }
    
    for (int len=1;len<=n;len++)
    for (int i=1;i+len-1<=2*n;i++)
    {
        int l=i,r=i+len-1;
        if (len!=1) f[l][r]=-2e9;
        for (int k=l;k<r;k++)
        {
            f[l][r]=max(f[l][r],f[l][k]+f[k+1][r]+str[l].x*str[k].y*str[r].y);          //左区间左端点的头*左区间右端点的尾*右区间右端点的尾
        }
    }
    
    int ans=-2e9;
    for (int i=1;i<=n;i++) ans=max(ans,f[i][i+n-1]);
    cout<<ans;
}
signed main()
{
    ios;
    int T=1;
    //cin>>T; 
    while (T--) solve();
    return 0;
}


//代码二
//划分方式:f(l,r)=f(l,k)+f(k,r)+a[l]*a[k]*a[r]
#include <bits/stdc++.h>
using namespace std;
#define int long long
#define endl '\n'
#define ios ios::sync_with_stdio(false),cin.tie(nullptr),cout.tie(nullptr);
int gcd(int a,int b) { return b? gcd(b,a%b) : a; }
typedef pair<int,int> PII;
const double PI=acos(-1.0);
const int N=400;
int n;
int a[N];
int f[N][N];
void solve()
{
    cin>>n;
    for (int i=1;i<=n;i++) cin>>a[i],a[i+n]=a[i];
    
    for (int len=3;len<=n+1;len++)                      //至少 3 个点
    for (int i=1;i+len-1<=2*n;i++)
    {
        int l=i,r=i+len-1;
        f[l][r]=-2e9;
        for (int k=l;k<r;k++)
        {
            f[l][r]=max(f[l][r],f[l][k]+f[k][r]+a[l]*a[k]*a[r]); 
        }
    }
    
    int ans=-2e9;
    for (int i=1;i<=n;i++) ans=max(ans,f[i][i+n]);      //查找区间长度为 n+1 的
    cout<<ans;
}
signed main()
{
    ios;
    int T=1;
    //cin>>T; 
    while (T--) solve();
    return 0;
}

 四、凸多边形的划分

给定一个具有 N 个顶点的凸多边形,将顶点从 1 至 N 标号,每个顶点的权值都是一个正整数。
将这个凸多边形划分成 N−2 个互不相交的三角形,对于每个三角形,其三个顶点的权值相乘都可得到一个权值乘积,试求所有三角形的顶点权值乘积之和至少为多少。

输入
第一行包含整数 N (N ≤ 50),表示顶点数量。
第二行包含 N 个整数,依次为顶点 1 至顶点 N 的权值。

输出
输出仅一行,为所有三角形的顶点权值乘积之和的最小值。
数据保证所有顶点的权值都小于 1e9

Input
5
121 122 123 245 231

Output
12214884

 解析:


f[l][r] 表示 所有 由(l,l+1)(l+1,l+2)……(r-1,r)(r,l)这些边组成的多边形 划分成三角形的方案的集合。
跟上道题的划分是一样的,不过不需要破环成链,因为枚举哪一条边都是一样的。
这里的运算数据太大,需要高精度运算。

//代码一:没有加高精度的代码
#include <bits/stdc++.h>
using namespace std;
#define int long long
#define endl '\n'
#define ios ios::sync_with_stdio(false),cin.tie(nullptr),cout.tie(nullptr);
int gcd(int a,int b) { return b? gcd(b,a%b) : a; }
typedef pair<int,int> PII;
const double PI=acos(-1.0);
const int N=110;
int n;
int w[N];
int f[N][N];
int INF=1e18;
void solve()
{
    cin>>n;
    for (int i=1;i<=n;i++) cin>>w[i];
    
    for (int len=3;len<=n;len++)
    for (int i=1;i+len-1<=n;i++)
    {
        int l=i,r=i+len-1;
        f[l][r]=INF;
        for (int k=l;k<r;k++)
        {
            f[l][r]=min(f[l][r],f[l][k]+f[k][r]+w[l]*w[k]*w[r]);
        }
    }
    
    cout<<f[1][n];
}
signed main()
{
    ios;
    int T=1;
    //cin>>T; 
    while (T--) solve();
    return 0;
}



//代码二:加了高精度的代码
#include <bits/stdc++.h>
using namespace std;
#define int long long
#define endl '\n'
#define ios ios::sync_with_stdio(false),cin.tie(nullptr),cout.tie(nullptr);
int gcd(int a,int b) { return b? gcd(b,a%b) : a; }
typedef pair<int,int> PII;
const double PI=acos(-1.0);
const int N=55,M=35,INF=1e9;
int n;
int w[N];
int f[N][N][M];
int c[M];
void add(int a[],int b[])
{
    memset(c,0,sizeof c);
    int t=0;
    for (int i=0;i<M;i++)
    {
        t +=a[i]+b[i];
        c[i]=t%10;
        t /=10;
    }
    memcpy(a,c,sizeof c);
}
void mul(int a[],int b)
{
    memset(c,0,sizeof c);
    int t=0;
    for (int i=0;i<M;i++)
    {
        t +=a[i]*b;
        c[i]=t%10;
        t /=10;
    }
    memcpy(a,c,sizeof c);
}
int cmp(int a[],int b[])
{
    for (int i=M-1;i>=0;i--)
    {
        if (a[i]>b[i]) return 1;
        else if (a[i]<b[i]) return -1;
    }
    return 0;
}
void print(int a[])
{
    int k=M-1;
    while (k&&!a[k]) k--;
    while (k>=0) cout<<a[k--];
    cout<<endl;
}
int temp[M];
void solve()
{
    cin>>n;
    for (int i=1;i<=n;i++) cin>>w[i];
    
    for (int len=3;len<=n;len++)
    for (int i=1;i+len-1<=n;i++)
    {
        int l=i,r=i+len-1;
        f[l][r][M-1]=1;
        for (int k=l+1;k<r;k++)
        {
            memset(temp,0,sizeof temp);
            temp[0]=w[l];
            mul(temp,w[k]);
            mul(temp,w[r]);
            add(temp,f[l][k]);
            add(temp,f[k][r]);
            if (cmp(f[l][r],temp)>0) memcpy(f[l][r],temp,sizeof temp);
        }
    }
    
    print(f[1][n]);
}
signed main()
{
    ios;
    int T=1;
    //cin>>T; 
    while (T--) solve();
    return 0;
}

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/388326.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

python系统学习Day2

section3 python Foudamentals part one&#xff1a;data types and variables 数据类型&#xff1a;整数、浮点数、字符串、布尔值、空值 #整型&#xff0c;没有大小限制 >>>9 / 3 #3.0 >>>10 // 3 #3 地板除 >>>10 % 3 #1 取余#浮点型&#xff…

[职场] 优质简历怎么做 #学习方法#笔记

优质简历怎么做 简历是求职的“敲门砖”&#xff0c;直接影响着求职成败。然而&#xff0c;不少求职者对简历不太重视&#xff0c;认为简历就是写自己的经历。因此&#xff0c;在招聘现场&#xff0c;常会看到这样的简历&#xff1a;有的是从某招聘网站直接下载而来&#xff0c…

LeetCode “AddressSanitizer:heat-use-after-free on address“问题解决方法

heat-use-after-free &#xff1a; 访问堆上已经被释放的内存地址 现象&#xff1a;同样代码在LeetCode上报错&#xff0c;但是自己在IDE手动打印并不会报错 个人猜测&#xff0c;这个bug可能来源于LeetCode后台输出打印链表的代码逻辑问题。 问题描述 题目来自LeetCode的8…

五官行为检测(表情基)解决方案提供商

随着人工智能技术的日益成熟&#xff0c;情感识别与行为分析在企业界的应用逐渐广泛。美摄科技作为业内领先的五官行为检测&#xff08;表情基&#xff09;解决方案提供商&#xff0c;致力于为企业提供高效、精准的情感识别与行为分析服务。 美摄科技的五官行为检测&#xff0…

Linux系统编程(四)进程

一、进程的产生&#xff08;fork&#xff09; fork(2) 系统调用会复制调用进程来创建一个子进程&#xff0c;在父进程中 fork 返回子进程的 pid&#xff0c;在子进程中返回 0。 #include <sys/types.h> #include <unistd.h>pid_t fork(void); fork 后子进程不继…

java 调用智谱ai 大模型的完整步骤(国内的 AI 大模型 对话)

要使用java 调用智谱AI的API进行异步调用&#xff0c;您需要遵循以下步骤&#xff1a; 1. **获取API密钥**&#xff1a; - 您需要从智谱AI平台获取一个API密钥&#xff08;API Key&#xff09;&#xff0c;这个密钥将用于所有API请求的身份验证。 2. **SDK源…

使用第三方幻兽帕鲁应用模板部署游戏后,是否需要更新?

需要更新&#xff0c;因为幻兽帕鲁官方客户端更新&#xff0c;所以服务器也需要同步更新&#xff0c;才能继续游玩。版本不一致的话&#xff0c;是不能进入游戏的。 有两种更新方法&#xff1a; 如果你使用幻兽帕鲁应用模板部署游戏&#xff0c;那么可以选择使用游戏配置面板一…

Android14之Android Rust模块编译语法(一百八十七)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 优质专栏&#xff1a;多媒…

【AI视野·今日CV 计算机视觉论文速览 第298期】Fri, 26 Jan 2024

AI视野今日CS.CV 计算机视觉论文速览 Fri, 26 Jan 2024 Totally 71 papers &#x1f449;上期速览✈更多精彩请移步主页 Daily Computer Vision Papers Multimodal Pathway: Improve Transformers with Irrelevant Data from Other Modalities Authors Yiyuan Zhang, Xiaohan …

springboot登录校验

一、登录功能 二、登录校验 2.1 会话技术 2.2 JWT令牌 JWT令牌解析&#xff1a; 如何校验JWT令牌&#xff1f;Filter和Interceptor两种方式。 2.3 过滤器Filter 2.3.1 快速入门 修改上述代码&#xff1a; 2.3.2 详解 2.3.3 登录校验-Filter 2.4 Interceptor拦截器 2.4.1 …

Ps:创建联系表

Ps菜单&#xff1a;文件/自动/联系表 II Automate/Contact sheet II Photoshop 的“联系表 II” Contact Sheet II命令为快速生成图像集合的预览和打印目录提供了一种高效的方法。 此命令可以通过自动化过程读取指定的图像文件&#xff0c;然后根据用户定义的参数&#xff08;如…

【C++关联式容器】unordered_set

目录 unordered_set 1. 关联式容器额外的类型别名 2. 哈希桶 3. 无序容器对关键字类型的要求 4. Member functions 4.1 constructor、destructor、operator 4.1.1 constructor 4.1.2 destructor 4.1.3 operator 4.2 Capacity ​4.2.1 empty 4.2.2 size 4.2.3 max…

人工智能时代

一、人工智能发展历史:从概念到现实 人工智能(Artificial Intelligence,简称AI)是计算机科学领域中一门旨在构建能够执行人类智能任务的系统的分支。其发展历程充满曲折,从概念的提出到如今的广泛应用,是技术、理论和实践相互交织的产物。 1. 起源(20世纪中期) 人工智…

代码随想录算法训练营Day27|回溯算法·组合总和、组合总和II、分割回文串

组合总和 class Solution{ private:vector<vector<int>>result;vector<int>path;void backtracking(vector<int>& candidates,int target,int sum,int startIndex){if(sum > target){return;}if(sum target){result.push_back(path);return;}…

混合键合(Hybrid Bonding)工艺解读

随着半导体技术的持续演进&#xff0c;传统的二维芯片缩放规则受到物理极限的挑战&#xff0c;尤其是摩尔定律在微小化方面的推进速度放缓。为了继续保持计算性能和存储密度的增长趋势&#xff0c;业界开始转向三维集成电路设计与封装技术的研发。混合键合技术就是在这样的背景…

【前端实战小项目】学成在线网页制作

文章目录 1.项目准备1.1 项目目录 2.头部区域2.1 头部区域布局2.2 logo制作2.2 导航制作技巧(nav)2.3搜索区域(search)2.3用户区域(user区域) 3.banner区域3.1 总体布局3.2 左侧侧导航(left)3.3 右侧课程表(left) 4.精品推荐区域(recommend)5.精品课程( course)6.前端开发工程师…

MySQL数据库基础(二):MySQL数据库介绍

文章目录 MySQL数据库介绍 一、MySQL介绍 二、MySQL的特点 三、MySQL版本 四、MySQL数据库下载与安装 1、下载 2、安装 五、添加环境变量&#xff08;Windows&#xff09; 六、检测环境变量是否配置成功 MySQL数据库介绍 一、MySQL介绍 MySQL是一个关系型数据库管理…

【Java多线程案例】定时器

1. 定时器简介 定时器&#xff1a;想必大家一定对定时器这个概念不陌生&#xff01;因为它经常出现在我们的日常生活和编程学习中&#xff0c;定时器就好比是一个"闹钟"&#xff0c;会在指定时间处理某件事&#xff08;例如响铃&#xff09;&#xff0c;而在编程世界…

【微服务】skywalking自定义告警规则使用详解

目录 一、前言 二、SkyWalking告警功能介绍 2.1 SkyWalking告警是什么 2.2 为什么需要SkyWalking告警功能 2.2.1 及时发现系统异常 2.2.2 保障和提升系统稳定性 2.2.3 避免数据丢失 2.2.4 提高故障处理效率 三、 SkyWalking告警规则 3.1 SkyWalking告警规则配置 3.2 …

春节结束后如何收心工作?

一、春节结束后的工作准备 春节假期结束后&#xff0c;迎来了新的工作季。在开始新的工作之前&#xff0c;首先需要对即将展开的工作进行充分的准备。整理和清理工作区域&#xff0c;给自己一个干净整洁的工作环境。检查和更新工作日程&#xff0c;确保未来一段时间的工作规划…