【解决(几乎)任何机器学习问题】:超参数优化篇(超详细)

这篇文章相当长,您可以添加至收藏夹,以便在后续有空时候悠闲地阅读。
有了优秀的模型,就有了优化超参数以获得最佳得分模型的难题。那么,什么是超参数优化呢?假设您的机器学习项⽬有⼀个简单的流程。有⼀个数据集,你直接应⽤⼀个模型,然后得到结 果。模型在这⾥的参数被称为超参数,即控制模型训练/拟合过程的参数。如果我们⽤ SGD 训练线性回归,模型的参数是斜率和偏差,超参数是学习率。你会发现我在本章和本书中交替使⽤这些术语。假设模型中有三个参数 a、b、c,所有这些参数都可以是 1 到 10 之间的整数。这些参数 的 "正确 "组合将为您提供最佳结果。因此,这就有点像⼀个装有三拨密码锁的⼿提箱。不过,三拨密码锁只有⼀个正确答案。⽽模型有很多正确答案。那么,如何找到最佳参数呢?⼀种⽅法是对所有组合进⾏评估,看哪种组合能提⾼指标。让我们看看如何做到这⼀点。
best_accuracy = 0
best_parameters = {"a": 0, "b": 0, "c": 0}
for a in range(1, 11):
    for b in range(1, 11):
        for c in range(1, 11):
            model = MODEL(a, b, c)
            model.fit(training_data)
            preds = model.predict(validation_data)
            accuracy = metrics.accuracy_score(targets, preds)
            if accuracy > best_accuracy:
                best_accuracy = accuracy
                best_parameters["a"] = a
                best_parameters["b"] = b
                best_parameters["c"] = c
在上述代码中,我们从 1 到 10 对所有参数进⾏了拟合。因此,我们总共要对模型进⾏ 1000 次(10 x 10 x 10)拟合。这可能会很昂贵,因为模型的训练需要很⻓时间。不过,在这种情况下应 该没问题,但在现实世界中,并不是只有三个参数,每个参数也不是只有⼗个值。 ⼤多数模型参 数都是实数,不同参数的组合可以是⽆限的。
让我们看看 scikit-learn 的随机森林模型。
RandomForestClassifier(
    n_estimators=100,
    criterion='gini',
    max_depth=None,
    min_samples_split=2,
    min_samples_leaf=1,
    min_weight_fraction_leaf=0.0,
    max_features='auto',
    max_leaf_nodes=None,
    min_impurity_decrease=0.0,
    min_impurity_split=None,
    bootstrap=True,
    oob_score=False,
    n_jobs=None,
    random_state=None,
    verbose=0,
    warm_start=False,
    class_weight=None,
    ccp_alpha=0.0,
    max_samples=None,
    )
有 19 个参数,⽽所有这些参数的所有组合,以及它们可以承担的所有值,都将是⽆穷⽆尽的。通常情况下,我们没有⾜够的资源和时间来做这件事。因此,我们指定了⼀个参数⽹格。在这个⽹格上寻找最佳参数组合的搜索称为⽹格搜索。我们可以说,n_estimators 可以是 100、200、250、300、400、500;max_depth 可以是 1、2、5、7、11、15;criterion 可以是 gini 或 entropy。这些参数看起来并不多,但如果数据集过⼤,计算起来会耗费⼤量时间。我们可以像之前⼀样创建三个 for 循环,并在验证集上计算得分,这样就能实现⽹格搜索。还必须注意的是,如果要进⾏ k 折交叉验证,则需要更多的循环,这意味着需要更多的时间来找到完美的参数。因此,⽹格搜索并不流⾏。让我们以根据 ⼿机配置预测⼿机价格范围 数据集为例,看看它是如何实现的。

 

1 :⼿机配置预测⼿机价格范围数据集展⽰
训练集中只有 2000 个样本。我们可以轻松地使⽤分层 kfold 和准确率作为评估指标。我们将使⽤ 具有上述参数范围的随机森林模型,并在下⾯的⽰例中了解如何进⾏⽹格搜索。
# rf_grid_search.py
import numpy as np
import pandas as pd
from sklearn import ensemble
from sklearn import metrics
from sklearn import model_selection

if __name__ == "__main__":
    df = pd.read_csv("./input/mobile_train.csv")
    X = df.drop("price_range", axis=1).values
    y = df.price_range.values

    classifier = ensemble.RandomForestClassifier(n_jobs=-1)
    param_grid = {
        "n_estimators": [100, 200, 250, 300, 400, 500],
        "max_depth": [1, 2, 5, 7, 11, 15],
        "criterion": ["gini", "entropy"]
    }

    model = model_selection.GridSearchCV(
        estimator=classifier,
        param_grid=param_grid,
        scoring="accuracy",
        verbose=10,
        n_jobs=1,
        cv=5
    )

    model.fit(X, y)
    print(f"Best score: {model.best_score_}")
    print("Best parameters set:")
    best_parameters = model.best_estimator_.get_params()
    for param_name in sorted(param_grid.keys()):
        print(f"\t{param_name}: {best_parameters[param_name]}")
这⾥打印了很多内容,让我们看看最后⼏⾏。
[ CV ] criterion = entropy , max_depth = 15 , n_estimators = 500 , score = 0.895 ,
total = 1.0 s
[ CV ] criterion = entropy , max_depth = 15 , n_estimators = 500 ...............
[ CV ] criterion = entropy , max_depth = 15 , n_estimators = 500 , score = 0.890 ,
total = 1.1 s
[ CV ] criterion = entropy , max_depth = 15 , n_estimators = 500 ...............
[ CV ] criterion = entropy , max_depth = 15 , n_estimators = 500 , score = 0.910 ,
total = 1.1 s
[ CV ] criterion = entropy , max_depth = 15 , n_estimators = 500 ...............
[ CV ] criterion = entropy , max_depth = 15 , n_estimators = 500 , score = 0.880 ,
total = 1.1 s
[ CV ] criterion = entropy , max_depth = 15 , n_estimators = 500 ...............
[ CV ] criterion = entropy , max_depth = 15 , n_estimators = 500 , score = 0.870 , total = 1.1 s
[ Parallel ( n_jobs = 1 )]: Done 360 out of 360 | elapsed : 3.7 min finished
Best score : 0.889
Best parameters set :
criterion : 'entropy'
max_depth : 15
n_estimators : 500
最后,我们可以看到,5折交叉检验最佳得分是 0.889,我们的⽹格搜索得到了最佳参数。我们可 以使⽤的下⼀个最佳⽅法是 随机搜索 。在随机搜索中,我们随机选择⼀个参数组合,然后计算交 叉验证得分。这⾥消耗的时间⽐⽹格搜索少,因为我们不对所有不同的参数组合进⾏评估。我们 选择要对模型进⾏多少次评估,这就决定了搜索所需的时间。代码与上⾯的差别不⼤。除了GridSearchCV 外,我们使⽤ RandomizedSearchCV。
if __name__ == "__main__":
    classifier = ensemble.RandomForestClassifier(n_jobs=-1)
    param_grid = {
        "n_estimators": np.arange(100, 1500, 100),
        "max_depth": np.arange(1, 31),
        "criterion": ["gini", "entropy"]
    }
    model = model_selection.RandomizedSearchCV(
        estimator=classifier,
        param_distributions=param_grid,
        n_iter=20,
        scoring="accuracy",
        verbose=10,
        n_jobs=1,
        cv=5
    )
    model.fit(X, y)
    print(f"Best score: {model.best_score_}")
    print("Best parameters set:")
    best_parameters = model.best_estimator_.get_params()
    for param_name in sorted(param_grid.keys()):
        print(f"\t{param_name}: {best_parameters[param_name]}")

我们更改了随机搜索的参数⽹格,结果似乎有了些许改进。

Best score : 0.8905
Best parameters set :
criterion : entropy
max_depth : 25
n_estimators : 300
如果迭代次数较少,随机搜索⽐⽹格搜索更快。使⽤这两种⽅法,你可以为各种模型找到最优参 数,只要它们有拟合和预测功能,这也是 scikit-learn 的标准。有时,你可能想使⽤管道。例如假设我们正在处理⼀个多类分类问题。在这个问题中,训练数据由两列⽂本组成,你需要建⽴⼀个模型来预测类别。让我们假设你选择的管道是⾸先以半监督的⽅式应⽤ tf-idf,然后使⽤SVD 和SVM 分类器。现在的问题是,我们必须选择 SVD 的成分,还需要调整 SVM 的参数。下⾯的代段展⽰了如何做到这⼀点。

import numpy as np
import pandas as pd
from sklearn import metrics
from sklearn import model_selection
from sklearn import pipeline
from sklearn.decomposition import TruncatedSVD
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC

def quadratic_weighted_kappa(y_true, y_pred):
    return metrics.cohen_kappa_score(y_true, y_pred, weights="quadratic")

if __name__ == '__main__':
    train = pd.read_csv('./input/train.csv')
    idx = test.id.values.astype(int)
    train = train.drop('id', axis=1)
    test = test.drop('id', axis=1)

    y = train.relevance.values
    traindata = list(train.apply(lambda x:'%s %s' % (x['text1'], x['text2']), axis=1))
    testdata = list(test.apply(lambda x:'%s %s' % (x['text1'], x['text2']), axis=1))

    tfv = TfidfVectorizer(
        min_df=3,
        max_features=None,
        strip_accents='unicode',
        analyzer='word',
        token_pattern=r'\w{1,}',
        ngram_range=(1, 3),
        use_idf=1,
        smooth_idf=1,
        sublinear_tf=1,
        stop_words='english'
    )

    tfv.fit(traindata)
    X = tfv.transform(traindata)
    X_test = tfv.transform(testdata)

    svd = TruncatedSVD()
    scl = StandardScaler()
    svm_model = SVC()

    clf = pipeline.Pipeline([
        ('svd', svd),
        ('scl', scl),
        ('svm', svm_model)
    ])

    param_grid = {
        'svd__n_components': [200, 300],
        'svm__C': [10, 12]
    }

    kappa_scorer = metrics.make_scorer(
        quadratic_weighted_kappa,
        greater_is_better=True
    )

    model = model_selection.GridSearchCV(
        estimator=clf,
        param_grid=param_grid,
        scoring=kappa_scorer,
        verbose=10,
        n_jobs=-1,
        refit=True,
        cv=5
    )

    model.fit(X, y)
    print("Best score: %0.3f" % model.best_score_)
    print("Best parameters set:")
    best_parameters = model.best_estimator_.get_params()
    for param_name in sorted(param_grid.keys()):
        print("\t%s: %r" % (param_name, best_parameters[param_name]))

    best_model = model.best_estimator_
    best_model.fit(X, y)
    preds = best_model.predict(X_test)
这⾥显⽰的管道包括 SVD(奇异值分解)、标准缩放和 SVM(⽀持向量机)模型。请注意,由于没有训练数据,您⽆法按原样运⾏上述代码。当我们进⼊⾼级超参数优化技术时,我们可以使⽤ 不同类型的 最⼩化算法 来研究函数的最⼩化。这可以通过使⽤多种最⼩化函数来实现,如下坡单 纯形算法、内尔德-梅德优化算法、使⽤⻉叶斯技术和⾼斯过程寻找最优参数或使⽤遗传算法。 我将在 "集合与堆叠(ensembling and stacking) "⼀章中详细介绍下坡单纯形算法和 NelderMead 算法的应⽤。⾸先,让我们看看⾼斯过程如何⽤于超参数优化。这类算法需要⼀个可以优化的函数。⼤多数情况下,都是最⼩化这个函数,就像我们最⼩化损失⼀样。因此,⽐⽅说,你想找到最佳参数以获得最佳准确度,显然,准确度越⾼越好。现在,我们不能最⼩化精确度,但我们可以将精确度乘以-1。这样,我们是在最⼩化精确度的负值,但事实上,我们是在最⼤化精确度。 在⾼斯过程中使⽤⻉叶斯优化,可以使⽤ scikit-optimize (skopt) 库中的 gp_minimize 函数。让我们看看如何使⽤该函数调整随机森林模型的参数。

# rf_gp_minimize.py
import numpy as np
import pandas as pd
from functools import partial
from sklearn import ensemble
from sklearn import metrics
from sklearn import model_selection
from skopt import gp_minimize
from skopt import space

def optimize(params, param_names, x, y):
    params = dict(zip(param_names, params))
    model = ensemble.RandomForestClassifier(**params)
    kf = model_selection.StratifiedKFold(n_splits=5)
    accuracies = []

    for idx in kf.split(X=x, y=y):
        train_idx, test_idx = idx[0], idx[1]
        xtrain = x[train_idx]
        ytrain = y[train_idx]
        xtest = x[test_idx]
        ytest = y[test_idx]

        model.fit(xtrain, ytrain)
        preds = model.predict(xtest)
        fold_accuracy = metrics.accuracy_score(ytest, preds)
        accuracies.append(fold_accuracy)

    return -1 * np.mean(accuracies)

if __name__ == "__main__":
    df = pd.read_csv("./input/mobile_train.csv")
    X = df.drop("price_range", axis=1).values
    y = df.price_range.values

    param_space = [
        space.Integer(3, 15, name="max_depth"),
        space.Integer(100, 1500, name="n_estimators"),
        space.Categorical(["gini", "entropy"], name="criterion"),
        space.Real(0.01, 1, prior="uniform", name="max_features")
    ]

    param_names = [
        "max_depth",
        "n_estimators",
        "criterion",
        "max_features"
    ]

    optimization_function = partial(
        optimize,
        param_names=param_names,
        x=X,
        y=y
    )

    result = gp_minimize(
        optimization_function,
        dimensions=param_space,
        n_calls=15,
        n_random_starts=10,
        verbose=10
    )

    best_params = dict(
        zip(
            param_names,
            result.x
        )
    )
    print(best_params)

这同样会产⽣⼤量输出,最后⼀部分如下所⽰。

Iteration No : 14 started . Searching for the next optimal point .
Iteration No : 14 ended . Search finished for the next optimal point .
Time taken : 4.7793
Function value obtained : - 0.9075
Current minimum : - 0.9075
Iteration No : 15 started . Searching for the next optimal point .
Iteration No : 15 ended . Search finished for the next optimal point .
Time taken : 49.4186
Function value obtained : - 0.9075
Current minimum : - 0.9075
{ 'max_depth' : 12 , 'n_estimators' : 100 , 'criterion' : 'entropy' ,
'max_features' : 1.0 }
看来我们已经成功突破了 0.90的准确率。这真是太神奇了!
我们还可以通过以下代码段查看(绘制)我们是如何实现收敛的。
from skopt . plots import plot_convergence
plot_convergence ( result )

收敛图如图 2 所⽰。

2:随机森林参数优化的收敛图
Scikit- optimize 就是这样⼀个库。 hyperopt 使⽤树状结构帕岑估计器(TPE)来找到最优参数。请看下⾯的代码⽚段,我在使⽤ hyperopt 时对之前的代码做了最⼩的改动。

import numpy as np
import pandas as pd
from functools import partial
from sklearn import ensemble
from sklearn import metrics
from sklearn import model_selection
from hyperopt import hp, fmin, tpe, Trials
from hyperopt.pyll.base import scope

def optimize(params, x, y):
    model = ensemble.RandomForestClassifier(**params)
    kf = model_selection.StratifiedKFold(n_splits=5)
    accuracies = []

    for idx in kf.split(X=x, y=y):
        train_idx, test_idx = idx[0], idx[1]
        xtrain = x[train_idx]
        ytrain = y[train_idx]
        xtest = x[test_idx]
        ytest = y[test_idx]

        model.fit(xtrain, ytrain)
        preds = model.predict(xtest)
        fold_accuracy = metrics.accuracy_score(ytest, preds)
        accuracies.append(fold_accuracy)

    return -1 * np.mean(accuracies)

if __name__ == "__main__":
    df = pd.read_csv("./input/mobile_train.csv")
    X = df.drop("price_range", axis=1).values
    y = df.price_range.values

    param_space = {
        "max_depth": scope.int(hp.quniform("max_depth", 1, 15, 1)),
        "n_estimators": scope.int(hp.quniform("n_estimators", 100, 1500, 1)),
        "criterion": hp.choice("criterion", ["gini", "entropy"]),
        "max_features": hp.uniform("max_features", 0, 1)
    }

    optimization_function = partial(
        optimize,
        x=X,
        y=y
    )

    trials = Trials()
    hopt = fmin(
        fn=optimization_function,
        space=param_space,
        algo=tpe.suggest,
        max_evals=15,
        trials=trials
    )

    print(hopt)
正如你所看到的,这与之前的代码并⽆太⼤区别。你必须以不同的格式定义参数空间,还需要改
变实际优化部分,⽤ hyperopt 代替 gp_minimize。结果相当不错!
❯ python rf_hyperopt . py
100 %| ██████████████████ | 15 / 15 [ 0 4 : 38 < 0 0 : 0 0 , 18.57 s / trial , best loss : -
0.9095000000000001 ]
{ 'criterion' : 1 , 'max_depth' : 11.0 , 'max_features' : 0.821163568049807 ,
'n_estimators' : 806.0 }

我们得到了⽐以前更好的准确度和⼀组可以使⽤的参数。请注意,最终结果中的标准是 1。这意味着选择了 1,即熵。 上述调整超参数的⽅法是最常⻅的,⼏乎适⽤于所有模型:线性回归、逻辑回归、基于树的⽅法、梯度提升模型(如 xgboost、lightgbm),甚⾄神经⽹络!
虽然这些⽅法已经存在,但学习时必须从⼿动调整超参数开始,即⼿⼯调整。⼿动调整可以帮助 你学习基础知识,例如,在梯度提升中,当你增加深度时,你应该降低学习率。如果使⽤⾃动⼯ 具,就⽆法学习到这⼀点。请参考下表,了解应如何调整。RS* 表⽰随机搜索应该更好.
⼀旦你能更好地⼿动调整参数,你甚⾄可能不需要任何⾃动超参数调整。创建⼤型模型或引⼊⼤ 量特征时,也容易造成训练数据的过度拟合。为避免过度拟合,需要在训练数据特征中引⼊噪声 或对代价函数进⾏惩罚。这种惩罚称为 正则化 ,有助于泛化模型。在线性模型中,最常⻅的正则 化类型是 L1 和 L2。L1 也称为 Lasso 回归,L2 称为 Ridge 回归。说到神经⽹络,我们会使⽤ dropout、添加增强、噪声等⽅法对模型进⾏正则化。利⽤超参数优化,还可以找到正确的惩罚⽅法。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/388074.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【算法设计与分析】反转链表 ||

&#x1f4dd;个人主页&#xff1a;五敷有你 &#x1f525;系列专栏&#xff1a;算法分析与设计 ⛺️稳中求进&#xff0c;晒太阳 题目 给你单链表的头指针 head 和两个整数 left 和 right &#xff0c;其中 left < right 。请你反转从位置 left 到位置 right 的链表…

【MySQL】外键约束的删除和更新总结

&#x1f308;个人主页: Aileen_0v0 &#x1f525;热门专栏: 华为鸿蒙系统学习|计算机网络|数据结构与算法 ​&#x1f4ab;个人格言:“没有罗马,那就自己创造罗马~” #mermaid-svg-7niJLSFaPo0wso60 {font-family:"trebuchet ms",verdana,arial,sans-serif;font-siz…

【Linux 02】权限基本概念

文章目录 &#x1f308; Ⅰ 权限概念&#x1f308; Ⅱ 权限管理1. 文件访问者分类 (角色)2. 文件类型和访问权限 (事物属性)3. 文件权限值表示方法 &#x1f308; Ⅲ 权限修改1. chmod 设置文件访问权限2. chown 修改文件拥有者3. chgrp 修改文件或目录的所属组 &#x1f308; …

Hive——企业调优经验

前言 本篇文章主要整理hive-3.1.2版本的企业调优经验&#xff0c;有误请指出~ 一、性能评估和优化 1.1 Explain查询计划 使用explain命令可以分析查询计划&#xff0c;查看计划中的资源消耗情况&#xff0c;定位潜在的性能问题&#xff0c;并进行相应的优化。 explain执行计划…

LabVIEW荧光显微镜下微管运动仿真系统开发

LabVIEW荧光显微镜下微管运动仿真系统开发 在生物医学研究中&#xff0c;对微管运动的观察和分析至关重要。介绍了一个基于LabVIEW的仿真系统&#xff0c;模拟荧光显微镜下微管的运动过程。该系统提供了一个高效、可靠的工具&#xff0c;用于研究微管与运动蛋白&#xff08;如…

汉诺塔问题——递归算法与非递归算法

一、问题描述 汉诺塔问题是一个经典的问题。汉诺塔&#xff08;Hanoi Tower&#xff09;&#xff0c;又称河内塔&#xff0c;源于印度一个古老传说。大梵天创造世界的时候做了三根金刚石柱子&#xff0c;在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘。大梵天命令…

Spring 用法学习总结(一)之基于 XML 注入属性

百度网盘&#xff1a; &#x1f449; Spring学习书籍链接 Spring学习 1 Spring框架概述2 Spring容器3 基于XML方式创建对象4 基于XML方式注入属性4.1 通过set方法注入属性4.2 通过构造器注入属性4.3 使用p命名空间注入属性4.4 注入bean与自动装配4.5 注入集合4.6 注入外部属性…

auto.js教程(autojs教程、autox.js、autoxjs)笔记(二)环境搭建——2、安卓手机投屏软件scrcpy的安装和使用(scrcpy教程)

参考文章&#xff1a;【自动化技术】Autojs从入门到精通 参考文章&#xff1a;AutoXJS开发入门简介菜鸟教程 参考文章&#xff1a;关于Auto.js的下架说明 参考文章&#xff1a;Auto.js 4.1.0 文档 文章目录 005--【环境搭建】2、安卓手机投屏软件scrcpy的安装和使用scrcpy官…

【1024】我的创作纪念日

机缘 1024天了&#xff0c;开始在这里学习编程知识、IT技能&#xff0c;CSDN让我发现了一群热爱学习和分享的小伙伴&#xff0c;也逐渐在这里稳定下来。 收获 不知不觉已经两年多过去了&#xff0c;通过不断的分享&#xff0c;不仅自己的知识技能得到了提升&#xff0c;能帮…

腾讯云4核8G服务器多少钱?

腾讯云4核8G服务器多少钱&#xff1f;轻量应用服务器4核8G12M带宽一年446元、646元15个月&#xff0c;云服务器CVM标准型S5实例4核8G配置价格15个月1437.3元&#xff0c;5年6490.44元&#xff0c;标准型SA2服务器1444.8元一年&#xff0c;在txy.wiki可以查询详细配置和精准报价…

SpringCloud-Hystrix:服务熔断与服务降级

8. Hystrix&#xff1a;服务熔断 分布式系统面临的问题 复杂分布式体系结构中的应用程序有数十个依赖关系&#xff0c;每个依赖关系在某些时候将不可避免失败&#xff01; 8.1 服务雪崩 多个微服务之间调用的时候&#xff0c;假设微服务A调用微服务B和微服务C&#xff0c;微服…

B2科目二考试项目笔记

B2科目二考试项目笔记 1 桩考1.1 右起点倒库1.2 移库&#xff08;左→右&#xff09;1.3 驶向左起点1.4 左起点倒库1.5 驶向右起点 2 侧方停车考试阶段&#xff08;从路边开始&#xff09;&#xff1a; 3 直角转弯4 坡道定点停车和起步5 单边桥6 通过限速限宽门7 曲线行驶8 连续…

[数学建模] 计算差分方程的收敛点

[数学建模] 计算差分方程的收敛点 差分方程&#xff1a;差分方程描述的是在离散时间下系统状态之间的关系。与微分方程不同&#xff0c;差分方程处理的是在不同时间点上系统状态的变化。通常用来模拟动态系统&#xff0c;如在离散时间点上更新状态并预测未来状态。 收敛点&…

Selenium图表自动化开篇

目录 前言&#xff1a; 使用 Canvas 或者 SVG 渲染 选择哪种渲染器 代码触发 ECharts 中组件的行为 前言&#xff1a; 图表自动化一直以来是自动化测试中的痛点&#xff0c;也是难点&#xff0c;痛点在于目前越来越多公司开始构建自己的BI报表平台但是没有合适的自动化测试…

计算机设计大赛 深度学习OCR中文识别 - opencv python

文章目录 0 前言1 课题背景2 实现效果3 文本区域检测网络-CTPN4 文本识别网络-CRNN5 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; **基于深度学习OCR中文识别系统 ** 该项目较为新颖&#xff0c;适合作为竞赛课题方向&#xff0c;…

使用bpmn-js 配置颜色

本篇文章介绍如何使用bpmn-js给图例配置颜色。该示例展示了如何向BPMN图添加颜色的多种不同方法。 通过层叠设置颜色 这种方式比较简单&#xff0c;直接通过设置图片的CSS层叠样式就可实现。 .highlight-overlay {background-color: green; /* color elements as green */opa…

Python算法探索:从经典到现代

引言 Python&#xff0c;作为一种功能强大的编程语言&#xff0c;一直是算法实现的首选工具。从经典的排序和查找算法到现代的机器学习和深度学习算法&#xff0c;Python都展现出了其强大的实力。接下来&#xff0c;我们将一起探索Python算法的经典与现代。 一、经典算法&#…

关于Django的中间件使用说明。

目录 1.中间件2. 为什么要中间件&#xff1f;3. 具体使用中间件3.1 中间件所在的位置&#xff1a;在django的settings.py里面的MIDDLEWARE。3.2 中间件的创建3.3 中间件的使用 4. 展示成果 1.中间件 中间件的大概解释&#xff1a;在浏览器在请求服务器的时候&#xff0c;首先要…

小区周边适合开什么店?商机无限等你来挖掘

在小区周边开店&#xff0c;是许多创业者的首选。那么&#xff0c;到底开什么店才能抓住商机呢&#xff1f; 作为一名开店 5 年的资深创业者&#xff0c;我将以我的鲜奶吧为例&#xff0c;分享一些实用的经验和见解。 我的鲜奶吧采用了鲜奶吧酸奶店结合体的模式&#xff0c;产…

操作 Docker 存储卷的常用指令汇总

1. 什么是存储卷&#xff1f; 存储卷就是将宿主机的本地文件系统中存在的某个目录直接与容器内部的文件系统上的某一目录建立绑定关系。使得可以在宿主机和容器内共享数据库内容&#xff0c;让容器直接访问宿主机中的内容&#xff0c;也可以宿主机向容器写入内容&#xff0c;容…