机器学习3----决策树

这是前期准备

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
#ID3算法
#每个特征的信息熵
# target : 账号是否真实,共2种情况
#    yes  7个   p=0.7
#    no   3个   p=0.3
info_D=-(0.7*np.log2(0.7)+0.3*np.log2(0.3))
info_D
#日志密度L
# 日志密度 3种结果
#   s   3个  0.3   1yes,2no
#   m   4个  0.4   3yes,1no
#   l   3个  0.3   3yes,0no
info_L_D = 0.3 * ( - ( (1/3) * np.log2(1/3)  + (2/3) * np.log2(2/3) ) ) \
         + 0.4 * ( - ( (3/4) * np.log2(3/4)  + (1/4) * np.log2(1/4) ) ) 
         # + 0.3 * ( - ( (3/3) * np.log2(3/3)  + (0/3) * np.log2(0/3) ) ) 

info_L_D
#而信息增益即为两者的差值
gain_L = info_D - info_L_D
gain_L
# 好友密度 3种结果
#   s   4个  0.4   1yes,3no
#   m   4个  0.4   4yes,0no
#   l   2个  0.2   2yes,0no

info_F_D = 0.4 * ( - ( (1/4) * np.log2(1/4)  + (3/4) * np.log2(3/4) ) ) 

info_F_D
gain_F = info_D - info_F_D
gain_F
# 是否使用真实头像 2种结果
#   yes   5个  0.5   4yes,1no
#   no    5个  0.5   3yes,2no

info_H_D = 0.5 * ( - ( (4/5) * np.log2(4/5)  + (1/5) * np.log2(1/5) ) )  \
         + 0.5 * ( - ( (3/5) * np.log2(3/5)  + (2/5) * np.log2(2/5) ) ) 

info_H_D
gain_H = info_D - info_H_D
gain_H
# ID3算法
#   信息增益: gain_F > gain_L > gain_H
#                0.55 > 0.28   > 0.03

# 优先分裂:好友密度
# 如果有类似ID的特征(每一个值都不一样)
#    ID有10种结果
#       1     有1个   0.1    1yes或1no
#       2     有1个   0.1    1yes或1no
#       3     有1个   0.1    1yes或1no
#       4     有1个   0.1    1yes或1no
#       5     有1个   0.1    1yes或1no
#       6     有1个   0.1    1yes或1no
#       7     有1个   0.1    1yes或1no
#       8     有1个   0.1    1yes或1no
#       9     有1个   0.1    1yes或1no
#      10     有1个   0.1    1yes或1no
      
# info_ID_D = 0.1 * ( - ( (0/1) * np.log2(0/1)  + (1/1) * np.log2(1/1) ) )   * 10
info_ID_D  = 0


# ID的信息增益
gain_ID = info_D - info_ID_D
gain_ID
### C4.5算法
# 解决的主要问题是: ID3算法中出现的ID属性的问题
# 单独计算每个特征的信息熵
# 信息增益率  
#  信息增益率 = 信息增益 / 每个特征单独的信息熵


# 日志密度L
#   s   3个  0.3   
#   m   4个  0.4   
#   l   3个  0.3  


info_L = - ( 0.3 * np.log2(0.3)  + 0.4 * np.log2(0.4) + 0.3 * np.log2(0.3) )
info_L

gain_L / info_L
# 好友密度F
#   s   4个  0.4 
#   m   4个  0.4   
#   l   2个  0.2  


info_F = - ( 0.4 * np.log2(0.4)  + 0.4 * np.log2(0.4) + 0.2 * np.log2(0.2) )
info_F

gain_F / info_F
# 是否使用真实头像H
#   yes   5个  0.5
#   no    5个  0.5   


info_H = - ( 0.5 * np.log2(0.5)  + 0.5 * np.log2(0.5)  )
info_H

gain_H / info_H
# ID
#   1    1个  0.1
#   2    1个  0.1   
#   ... 
#  10    1个  0.1   


info_ID = - ( 0.1 * np.log2(0.1)  * 10 )
info_ID

gain_ID / info_ID
#  好友密度最大 0.36  

###  CART算法
#gini_D = 1 - sum( p(x)**2 )
#gini : 基尼, 基尼系数,作用类似信息熵
%timeit np.log2(1000000)
%timeit 1000000**2 
# target : 账号是否真实,共2种情况
#    yes  7个   p=0.7
#    no   3个   p=0.3

gini_D = 1 - ( 0.7**2 + 0.3**2 )
gini_D
# 日志密度 3种结果
#   s   3个  0.3   1yes,2no
#   m   4个  0.4   3yes,1no
#   l   3个  0.3   3yes,0no


gini_L_D = 0.3 * ( 1 - ((1/3)**2 + (2/3)**2)) \
         + 0.4 * ( 1 - ((1/4)**2 + (3/4)**2)) \
         + 0.3 * ( 1 - ((3/3)**2 + (0/3)**2))

gini_L_D
gini_D - gini_L_D
# 好友密度 3种结果
#   s   4个  0.4   1yes,3no
#   m   4个  0.4   4yes,0no
#   l   2个  0.2   2yes,0no

gini_F_D = 0.4 * ( 1 - ((1/4)**2 + (3/4)**2) ) 

gini_F_D
gini_D - gini_F_D
# 是否使用真实头像 2种结果
#   yes   5个  0.5   4yes,1no
#   no    5个  0.5   3yes,2no

gini_H_D = 0.5 * ( 1 - ( (4/5) **2  + (1/5) **2 ) )  \
         + 0.5 * ( 1 - ( (3/5) **2  + (2/5) **2 ) ) 

gini_H_D
gini_D - gini_H_D


#决策树代码
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier
data, target = load_iris(return_X_y=True)
data.shape, target.shape
#criterion='gini', gini系数, 默认使用CART算法,一般使用默认值
#- splitter='best',  分割方式, 默认是best,最好的分割方式
#- max_depth=None,   树的最大深度,数据量少的情况下不设置,默认没有限制深度,
#    -  数据量大的情况下需要设置,防止过拟合
#- min_samples_split=2, 最小分裂的样本数,数据量少的情况下不设置,默认是2
#    -  数据量大的话,可以增加该值
#- min_samples_leaf=1,  叶子节点所需要的最少样本数,
#   -  如果叶子节点上的样本数小于该值,则会被剪枝(兄弟节点一般也会被剪枝)
#    -  数据量不大的情况下,一般不设置,
#   -   如果数据量比较大(上万)的时候考虑增加该值
tree=DecisionTreeClassifier(max_depth=2)
tree=DecesionTreeClassifier(min_samples_split=4,min_samples_leas=4)
tree.fit(data).score(data,target)

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/387704.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

华为23年9月笔试原题,巨详细题解,附有LeetCode测试链接

文章目录 前言思路主要思路关于f函数的剖析Code就到这,铁子们下期见!!!! 前言 铁子们好啊!今天阿辉又给大家来更新新一道好题,下面链接是23年9月27的华为笔试原题,LeetCode上面的ha…

- 语言经验 - 《c++的高性能内存管理库tcmalloc和jemalloc》

本文属于专栏《构建工业级QPS百万级服务》​​​​​ 1、前置知识 c的内存管理,主要说的是堆内存管理。现代计算机系统中,用户进程的堆内存,由内核映射。 堆内存的来源 主要是通过mmap()函数,在进程的虚拟地址空…

【Linux技术宝典】深入理解Linux基本指令:命令行新手指南

📷 江池俊: 个人主页 🔥个人专栏: ✅数据结构冒险记 ✅Linux技术宝典 🌅 有航道的人,再渺小也不会迷途。 文章目录 一、Linux下基本指令1. ls 指令2. pwd指令3. clear指令4. cd指令什么是家目录&#xf…

【AI视野·今日Robot 机器人论文速览 第七十八期】Wed, 17 Jan 2024

AI视野今日CS.Robotics 机器人学论文速览 Wed, 17 Jan 2024 Totally 49 papers 👉上期速览✈更多精彩请移步主页 Daily Robotics Papers Safe Mission-Level Path Planning for Exploration of Lunar Shadowed Regions by a Solar-Powered Rover Authors Olivier L…

【Pandas 统计函数和自定义函数的使用】

文章目录 前言一、统计函数1. 描述性统计2. 直方图 二、自定义函数1. 自定义函数示例 总结 前言 Pandas 是基于 NumPy 的数据分析工具,它提供了各种数据结构,如 Series 和 DataFrame,以及各种功能强大的函数,用于数据的统计、清洗…

随机过程及应用学习笔记(四) 马尔可夫过程

马尔可夫过程是理论上和实际应用中都十分重要的一类随机过程。 目录 前言 一、马尔可夫过程的概念 二、离散参数马氏链 1 定义 2 齐次马尔可夫链 3 齐次马尔可夫链的性质 三、齐次马尔可夫链状态的分类 四、有限马尔可夫链 五、状态的周期性 六、极限定理 七、生灭过…

Android adb使用超级大全

Android adb使用超级大全 ADB,即Android Debug Bridge,是一款强大的工具,对于Android开发/测试人员来说是不可或缺的,同时也是Android设备玩家的好玩具。本文将详细介绍ADB的使用方法。 ADB的基本用法如下: 命令语法…

chatglm3-6b使用

源码地址 GitHub - THUDM/ChatGLM3: ChatGLM3 series: Open Bilingual Chat LLMs | 开源双语对话语言模型 创建环境 conda create -n chatglm36 python3.11.7 修改源码中依赖,使得使用cuda,否则太慢了 pip3 install torch2.1.2 torchvision0.16.2 to…

SpringBoot3 + Vue3 由浅入深的交互 基础交互教学

说明:这篇文章是适用于已经学过SpringBoot3和Vue3理论知识,但不会具体如何实操的过程的朋友,那么我将手把手从教大家从后端与前端交互的过程教学。 目录 一、创建一个SpringBoot3项目的和Vue3项目并进行配置 1.1后端配置: 1.1.1applicatio…

C语言第二十四弹---指针(八)

✨个人主页: 熬夜学编程的小林 💗系列专栏: 【C语言详解】 【数据结构详解】 指针 1、数组和指针笔试题解析 1.1、字符数组 1.1.1、代码1: 1.1.2、代码2: 1.1.3、代码3: 1.1.4、代码4: 1…

StringJoiner

JDK8开始有,用来操作字符串,不仅可以提高字符串的操作效率,而且在某些场景使用它操作字符串,代码会更加简洁。 import java.util.StringJoiner;public class Test {public static void main(String[] args) {//StringJoiner的应用…

ChatGPT高效提问—prompt实践(漏洞风险分析-重构建议-识别内存泄漏)

ChatGPT高效提问—prompt实践(漏洞风险分析-重构建议-识别内存泄漏) 1.1 漏洞和风险分析 ChatGPT还可以帮助开发人员预测代码的潜在风险,识别其中的安全漏洞,而不必先运行它,这可以让开发人员及早发现错误&#xff0…

探索设计模式的魅力:创建型设计模式的比较与决策

设计模式专栏:http://t.csdnimg.cn/U54zu 目录 一、设计模式概览 1.1 创建型模式 二、比较创建型设计模式 1.1 适用场景典型用例 1.2 关键要素与差异对比 1.3 结构图 三、模式选择指南 3.1 场景分析 3.2 决策流程图 四、结语 4.1 优势 4.2 考量因素 一、…

【漏洞扫描】网络空间安全工具—Goby 快速入门使用指南

下载地址 Goby(含1322个POC) v2.8.9 社区版 介绍 Goby是一款基于网络空间测绘技术的新一代网络安全工具,它通过给目标网络建立完整的资产知识库,进行网络安全事件应急与漏洞应急。 Goby可提供最全面的资产识别,目前…

串行通信的艺术:深入解析UART与奇偶校验

发送数据位是电流传输吗? 在UART(Universal Asynchronous Receiver/Transmitter)通信中,发送数据位不直接以电流的形式传输。而是通过改变电压水平或者光信号(在光纤通信中)来表示不同的数据位&#xff08…

C#利用接口实现选择不同的语种

目录 一、涉及到的知识点 1.接口定义 2.接口具有的特征 3.接口通过类继承来实现 4.有效使用接口进行组件编程 5.Encoding.GetBytes(String)方法 (1)检查给定字符串中是否包含中文字符 (2)编码和还原前后 6.Encoding.GetS…

[计算机网络]---网络编程套接字

前言 作者:小蜗牛向前冲 名言:我可以接受失败,但我不能接受放弃 如果觉的博主的文章还不错的话,还请点赞,收藏,关注👀支持博主。如果发现有问题的地方欢迎❀大家在评论区指正 目录 一、基础知识…

数仓建模—数据网格

数据网格 随着数字化时代的到来,近几年数据领域的新技术概念不断涌现,无论是数据湖、湖仓一体、流批一体、存算一体、数据编织抑或数据网格,很多还爬上了Gartner曲线,其中数据网格备受关注,数据网格从字面意思来看挺抽象的,会劝退很多人,但当你深入去理解这个概念时,才…

数据存储以及内存

数据在内存中的存储是因不同的类型而不同的。 但首先我们需要知道的是,在C语言中,数据在内存中的存储是以变量的形式存储的。每个变量都有一个地址,指向内存中的特定位置。变量的值存储在这个地址对应的内存单元中。不同类型的变量在内存中占…

react【三】受控组件/高阶组件/portals/fragment/严格模式/动画

文章目录 1、受控组件1.1 认识受控组件1.2 checkout1.3 selected1.4 非受控组件 2、高阶组件2.1 认识高阶组件2.2 应用1-props增强的基本使用2.3 对象增强的应用场景-context共享2.4 应用2-鉴权2.5 应用3 – 生命周期劫持2.6、高阶组件的意义 3、Portals4、fragment5、StrictMo…