数字图像处理实验记录十(图像分割实验)

一、基础知识

1、什么是图像分割
图像分割就是指把图像分成各具特性的区域并提取出感兴趣目标的技术和过程,特性可以是灰度、颜色、纹理等,目标可以对应单个区域,也可以对应多个区域。
2、图像分割是怎么实现的
图像分割算法基于像素值的不连续性和相似性,不连续性是图像的边缘,再根据制定的准则将图像分割为相似的区域,如阈值处理、区域生长、区域分离和聚合。

二、实验要求

三、实验记录(具体任务只展示对图片1的处理)

总代码:

clear all;
close all;
clc;
% 实验11 图像分割
H1 = [1,2,1;
      0,0,0;
      -1,-2,-1];
H2 = [1,0,-1;
      2,0,-2;
      1,0,-1];
H3 = [0,1,2;
      -1,0,1;
      -2,-1,0 ];
H4 = [2,1,0;
      1,0,-1;
      0,-1,-2 ];
I = imread('01.png');
I = rgb2gray(I);
% 1.分别使用sobel和sobel对角线算子处理图像。并计算图像梯度图。
figure('NumberTitle','off','Name','分割图片1_sobel');

I1 = imfilter(I,H1);
I2 = imfilter(I,H2);
I3 = imfilter(I,H3);
I4 = imfilter(I,H4);

I_sobel = I1+I2;
I_sobel2 = I3+I4;

subplot(2,1,1);imshow(I);title('原图');
subplot(2,2,3);imshow(I_sobel);title('sobel梯度图');
subplot(2,2,4);imshow(I_sobel2);title('sobel对角线梯度图');
figure('NumberTitle','off','Name','分割图片1_LoG');

% 使用 LoG (拉普拉斯高斯) 算子进行边缘检测
log_operator = fspecial('log', [5, 5], 1);  % 5x5 LoG 算子,标准差为 1
edge_image_log = abs(imfilter(double(I), log_operator, 'replicate'));

% 使用阈值保留大响应区域
threshold = 0.5;  % 设置阈值
res1 = edge_image_log > threshold;

% 显示原始图像和边缘检测结果
subplot(1, 2, 1);imshow(I);title('原始图像');

subplot(1, 2, 2);imshow(res1);title('LoG 边缘检测结果');
figure('NumberTitle','off','Name','分割图片1_局部阈值法');
% 使用局部阈值法进行图像分割
threshold = adaptthresh(I, 0.7);  % 设置阈值
res2 = imbinarize(I, threshold);

% 显示原始图像和局部阈值法分割结果
subplot(1, 2, 1);imshow(I);title('原始图像');
subplot(1, 2, 2);imshow(res2);title('局部阈值法分割结果');

I = imread('02.png');
I = rgb2gray(I);
figure('NumberTitle','off','Name','分割图片2_sobel');

I1 = imfilter(I,H1);
I2 = imfilter(I,H2);
I3 = imfilter(I,H3);
I4 = imfilter(I,H4);

I_sobel = I1+I2;
I_sobel2 = I3+I4;

subplot(2,1,1);imshow(I);title('原图');
subplot(2,2,3);imshow(I_sobel);title('sobel梯度图');
subplot(2,2,4);imshow(I_sobel2);title('sobel对角线梯度图');
figure('NumberTitle','off','Name','分割图片2_LoG');

% 使用 LoG (拉普拉斯高斯) 算子进行边缘检测
log_operator = fspecial('log', [5, 5], 1);  % 5x5 LoG 算子,标准差为 1
edge_image_log = abs(imfilter(double(I), log_operator, 'replicate'));

% 使用阈值保留大响应区域
threshold = 0.5;  % 设置阈值
res1 = edge_image_log > threshold;

% 显示原始图像和边缘检测结果
subplot(1, 2, 1);imshow(I);title('原始图像');

subplot(1, 2, 2);imshow(res1);title('LoG 边缘检测结果');
figure('NumberTitle','off','Name','分割图片2_局部阈值法');
% 使用局部阈值法进行图像分割
threshold = adaptthresh(I, 0.7);  % 设置阈值
res2 = imbinarize(I, threshold);

% 显示原始图像和局部阈值法分割结果
subplot(1, 2, 1);
imshow(I);
title('原始图像');

subplot(1, 2, 2);
imshow(res2);
title('局部阈值法分割结果');
I = imread('Acat.png');
I = rgb2gray(I);
figure('NumberTitle','off','Name','分割图片3_sobel');

I1 = imfilter(I,H1);
I2 = imfilter(I,H2);
I3 = imfilter(I,H3);
I4 = imfilter(I,H4);

I_sobel = I1+I2;
I_sobel2 = I3+I4;

subplot(2,1,1);imshow(I);title('原图');
subplot(2,2,3);imshow(I_sobel);title('sobel梯度图');
subplot(2,2,4);imshow(I_sobel2);title('sobel对角线梯度图');
figure('NumberTitle','off','Name','分割图片3_LoG');

% 使用 LoG (拉普拉斯高斯) 算子进行边缘检测
log_operator = fspecial('log', [5, 5], 1);  % 5x5 LoG 算子,标准差为 1
edge_image_log = abs(imfilter(double(I), log_operator, 'replicate'));

% 使用阈值保留大响应区域
threshold = 0.5;  % 设置阈值
res1 = edge_image_log > threshold;

% 显示原始图像和边缘检测结果
subplot(1, 2, 1);imshow(I);title('原始图像');

subplot(1, 2, 2);imshow(res1);title('LoG 边缘检测结果');
figure('NumberTitle','off','Name','分割图片3_局部阈值法');
% 使用局部阈值法进行图像分割
threshold = adaptthresh(I, 0.7);  % 设置阈值
res2 = imbinarize(I, threshold);

% 显示原始图像和局部阈值法分割结果
subplot(1, 2, 1);
imshow(I);
title('原始图像');

subplot(1, 2, 2);
imshow(res2);
title('局部阈值法分割结果');


任务1:

分别使用sobel和sobel对角线算子处理图像。并计算图像梯度图。

H1 = [1,2,1;
      0,0,0;
      -1,-2,-1];
H2 = [1,0,-1;
      2,0,-2;
      1,0,-1];
H3 = [0,1,2;
      -1,0,1;
      -2,-1,0 ];
H4 = [2,1,0;
      1,0,-1;
      0,-1,-2 ];
I = imread('01.png');
I = rgb2gray(I);
% 1.分别使用sobel和sobel对角线算子处理图像。并计算图像梯度图。
figure('NumberTitle','off','Name','分割图片1_sobel');

I1 = imfilter(I,H1);
I2 = imfilter(I,H2);
I3 = imfilter(I,H3);
I4 = imfilter(I,H4);

I_sobel = I1+I2;
I_sobel2 = I3+I4;

subplot(2,1,1);imshow(I);title('原图');
subplot(2,2,3);imshow(I_sobel);title('sobel梯度图');
subplot(2,2,4);imshow(I_sobel2);title('sobel对角线梯度图');

任务2:

使用拉普拉斯高斯算子对图像进行边缘检测。(使用LoG算子处理图像,通过阈值保留大响应区域,求出二值图像中位于边缘的像素完成边缘检测)。

figure('NumberTitle','off','Name','分割图片1_LoG');

% 使用 LoG (拉普拉斯高斯) 算子进行边缘检测
log_operator = fspecial('log', [5, 5], 1);  % 5x5 LoG 算子,标准差为 1
edge_image_log = abs(imfilter(double(I), log_operator, 'replicate'));

% 使用阈值保留大响应区域
threshold = 0.5;  % 设置阈值
res1 = edge_image_log > threshold;

% 显示原始图像和边缘检测结果
subplot(1, 2, 1);imshow(I);title('原始图像');

subplot(1, 2, 2);imshow(res1);title('LoG 边缘检测结果');

任务3:

采用阈值法实现图像分割,尝试采取局部阈值法,得到更佳的效果。

figure('NumberTitle','off','Name','分割图片1_局部阈值法');
% 使用局部阈值法进行图像分割
threshold = adaptthresh(I, 0.7);  % 设置阈值
res2 = imbinarize(I, threshold);

% 显示原始图像和局部阈值法分割结果
subplot(1, 2, 1);imshow(I);title('原始图像');
subplot(1, 2, 2);imshow(res2);title('局部阈值法分割结果');

四、实验结果

任务1:

分别使用sobel和sobel对角线算子处理图像。并计算图像梯度图。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

任务2:

使用拉普拉斯高斯算子对图像进行边缘检测。(使用LoG算子处理图像,通过阈值保留大响应区域,求出二值图像中位于边缘的像素完成边缘检测)。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

任务3:

采用阈值法实现图像分割,尝试采取局部阈值法,得到更佳的效果。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/387122.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Leetcode 115 不同的子序列

题意理解: 给你两个字符串 s 和 t ,统计并返回在 s 的 子序列 中 t 出现的个数,结果需要对 109 7 取模。 即此题可以理解为:从s中删除元素去构造t,有多少种方法 或者也可以理解为:s中按顺序取t,有多少个 则一定有s和t…

HGAME 2024 WEEK2 Web方向题解 全

---------【WEEK-2】--------- What the cow say? 题目描述:the cow want to tell you something 注意title,Python的flask漏洞可多呢 版本310 先测一下SSTI 正常情况下 SSTI测试 变量渲染测试,被waf了,说明方向对了 单单过滤…

算法学习——LeetCode力扣回溯篇1

算法学习——LeetCode力扣回溯篇1 77. 组合 77. 组合 - 力扣(LeetCode) 描述 任何顺序 返回答案。 示例 示例 1: 输入:n 4, k 2 输出: [ [2,4], [3,4], [2,3], [1,2], [1,3], [1,4], ] 示例 2: 输…

Leetcode 606.根据二叉树创建字符串

给你二叉树的根节点root,请你采用前序遍历的方式,将二叉树转化为一个由括号和整数组成的字符串,返回构造出的字符串。 空节点使用一对空括号对"root"表示,转化后需要省略所有不影响字符串与原始二叉树之间的一对一映射…

openGauss学习笔记-219 openGauss性能调优-确定性能调优范围-硬件瓶颈点分析-网络

文章目录 openGauss学习笔记-219 openGauss性能调优-确定性能调优范围-硬件瓶颈点分析-网络219.1 查看网络状况 openGauss学习笔记-219 openGauss性能调优-确定性能调优范围-硬件瓶颈点分析-网络 获取openGauss节点的CPU、内存、I/O和网络资源使用情况,确认这些资源…

在Meteor Lake平台上使用NPU进行AI推理加速

在Meteor Lake平台上,英特尔通过神经处理单元 (NPU) 将人工智能直接融入芯片中,实现桌面电脑平台的AI推理功能。神经处理单元 (NPU) 是一种专用人工智能引擎,专为运行持续的人工智能推理工作负载而设计。与即将推出的支持深度人工智能集成的 …

【MySQL】索引事务

MySQL索引事务 1. 索引1.1 概念1.2 作用1.3 使用场景1.4 使用1.5 案例 2. 事务2.2 事物的概念2.3 使用 3. 内容重点总结 1. 索引 1.1 概念 索引是一种特殊的文件,包含着对数据表里所有记录的引用指针。可以对表中的一列或多列创建索引, 并指定索引的类…

ClickHouse--04--数据库引擎、Log 系列表引擎、 Special 系列表引擎

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 1.数据库引擎1.1 Ordinary 默认数据库引擎1.2 MySQL 数据库引擎MySQL 引擎语法字段类型的映射 2.ClickHouse 表引擎3.Log 系列表引擎几种 Log 表引擎的共性是&#…

Golang快速入门到实践学习笔记

Go学习笔记 1.基础 Go程序设计的一些规则 Go之所以会那么简洁,是因为它有一些默认的行为: 大写字母开头的变量是可导出的,也就是其它包可以读取 的,是公用变量;小写字母开头的就是不可导出的,是私有变量…

Python算法题集_二叉树的最大深度

Python算法题集_二叉树的最大深度 题104:二叉树的最大深度1. 示例说明2. 题目解析- 题意分解- 优化思路- 测量工具 3. 代码展开1) 标准求解【DFS自顶向下】2) 改进版一【DFS自底向上】3) 改进版二【BFS】 4. 最优算法 本文为Python算法题集之一的代码示例 题104&am…

现代化端口扫描工具RustScan

今天是大年初五,喜迎财神 ,祝大家✔️顺风顺水 ✔️诸事如意 ✔️财源滚滚 ✔️大吉大利 顺便提一下,老苏的博客启用了新域名: https://laosu.tech 什么是 RustScan ? RustScan 是一款现代化的端口扫描器。能快速找到端…

数学实验第三版(主编:李继成 赵小艳)课后练习答案(九)(1)(2)

实验九:线性函数极值求解 练习一 1.求解线性规划问题: (1)max z3,s.t. clc;clear; %采用软件解法 c[-3,-1]; a[-1,1;1,-2;3,2]; b[2;2;14]; [x,min]linprog(c,a,b)找到最优解。 x 4 1 min -13 题上要求的是最大值&#…

【从零到Offer】MySQL最左匹配

前言 ​ 相信大家在日常开发时,也经常能听到“最左匹配”这个词,那么什么是最左匹配呢?本篇文章就带你一起探索“最左匹配”的神奇秘密。 什么是最左匹配 ​ 最左匹配,通常指的是最左前缀匹配原则,即MySQL在检索数据…

c++ Qt 数据库操作

1、准备工作 Qt本身并没有数据库功能,但是Qt支持调用其他主流的数据库产品,并且这些数据库产品统一了Qt的接口,实际上是一种数据库的中间件。 Qt支持以下数据库类型: 嵌入式常用的数据库是sqlite3,本体只有几兆大小。非…

UnityShader玉石效果

效果: 代码: Shader "MyShader/Jade" {Properties{_DiffuseColor("漫反射颜色",color)(1,1,1,1)_ThicknessMap("厚度图",2d)"white"{}_AddColor("叠加颜色",color)(1,1,1,1)_CubeMap("环境贴图…

java实现多级目录树(递归实现)

一.应用场景 有时候需要我们后台给前台传树结构的数据,要怎么查询? 怎么返回数据呢? 二.数据库表设计以及数据内容(以部门举例) id 主键 parent_id 父级部门id depart_name 部门名词 sort 部门排序三.实体类 Data public…

Qt 软件封装与打包

1. Qt 软件封装 1、首先以 release 方式进行编译,将生成的 CloudOne.exe 文件复制到 D:\CloudApp 文件夹(自行创建) 2、打开 Qt 命令行工具(如下图所示),并按顺序输入如下指令 cd D:\CloudApp windeployq…

Spring Boot 笔记 019 创建接口_文件上传

1.1 创建阿里OSS bucket OSS Java SDK 兼容性和示例代码_对象存储(OSS)-阿里云帮助中心 (aliyun.com) 1.2 编写工具类 package com.geji.utils;import com.aliyun.oss.ClientException; import com.aliyun.oss.OSS; import com.aliyun.oss.OSSClientBuilder; import com.aliyun…

每日一题——数字翻转

题目; 这道题看似是很简单的回文数 实则就是很简单的回文数 但是需要注意的一点是负数 可以在开头就进行判断&#xff0c;如果N<0的话就令N-N&#xff0c;将所有数都转成正数就好办了 上代码&#xff1a; #include <iostream> #include<string> #include<…

算法沉淀——哈希算法(leetcode真题剖析)

算法沉淀——哈希算法 01.两数之和02.判定是否互为字符重排03.存在重复元素04.存在重复元素 II05.字母异位词分组 哈希算法&#xff08;Hash Algorithm&#xff09;是一种将任意长度的输入&#xff08;也称为消息&#xff09;映射为固定长度的输出的算法。这个输出通常称为哈希…