ClickHouse--04--数据库引擎、Log 系列表引擎、 Special 系列表引擎

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

文章目录

  • 1.数据库引擎
    • 1.1 Ordinary 默认数据库引擎
    • 1.2 MySQL 数据库引擎
      • MySQL 引擎语法
      • 字段类型的映射
  • 2.ClickHouse 表引擎
  • 3.Log 系列表引擎
      • 几种 Log 表引擎的共性是:
      • 它们彼此之间的区别是:
    • 3.1 TinyLog
    • 3.2 StripeLog
    • 3.3 Log
  • 4.Special 系列表引擎
    • 4.1 Memory
    • 4.2 Merge
    • 4.3 Distributed


1.数据库引擎

在这里插入图片描述

  • ClickHouse 中支持在创建数据库时指定引擎,目前比较常用的两种引擎为默认引擎
    和 MySQL 数据库引擎。

1.1 Ordinary 默认数据库引擎

Ordinary 就是 ClickHouse 中默认引擎,如果不指定数据库引擎创建的就是Ordinary 数据库引擎,在这种数据库下面可以使用任意表引擎。创建时需要注意,Ordinary 首字母需要大写,不然会抛出异常。
在这里插入图片描述
在这里插入图片描述

1.2 MySQL 数据库引擎

MySQL 引擎用于将远程的 MySQL 服务器中的表映射到 ClickHouse 中,并允许对表进行INSERT 插入和 SELECT 查询,方便在 ClickHouse 与 MySQL 之间进行数据交换。

  • 这里不会将 MySQL 的数据同步到 ClickHouse 中,ClickHouse 就像一个壳子,可以将 MySQL 的表映射成ClickHouse 表,使用 ClickHouse 查询 MySQL 中的数据,在 MySQL 中进行的 CRUD 操作,可以同时映射到 ClickHouse 中。
  • MySQL 数据库引擎会将对其的查询转换为 MySQL 语法并发送到 MySQL 服务器中,因此可以执行诸如 SHOW TABLES 或 SHOW CREATE TABLE 之类的操作,但是不允许创建表、修改表、删除数据、重命名操作

MySQL 引擎语法

ClickHouse 中创建库使用 MySQL 引擎语法如下:
在这里插入图片描述
在这里插入图片描述

字段类型的映射

  • 在 ClickHouse 中使用 MySQL 引擎建库,将 MySQL 库中数据映射到 ClickHouse中,mysql 库中表字段类型与 ClickHouse 表字段类型的映射如下,这里每种类型在ClickHouse 中都支持 Nullable,即可空。
    在这里插入图片描述

在这里插入图片描述

2.ClickHouse 表引擎

MySQL 的数据表有 InnoDB 和 MyISAM 存储引擎,不同的存储引擎提供不同的存储机制、索引方式等功能,也可以称之为表类型。在 ClickHouse 中也有表引擎。

表引擎在 ClickHouse 中的作用十分关键,直接决定了

  • 数据如何存储和读取
  • 是否支持并发读写
  • 是否支持 index 索引
  • 支持的 query 种类
  • 是否支持主备复制

ClickHouse 提供了大约 28 种表引擎,各有各的用途 纷繁复杂。ClickHouse 表引擎一共分为四个系列,分别是 Log 系列、MergeTree 系列、Integration 系列、Special 系列。其中包含了两种特殊的表引擎 Replicated、Distributed,功能上与其他表引擎正交,根据场景组合使用

  • Log 系列用来做小表数据分析
  • MergeTree 系列用来做大数据量分析
  • Integration 系列则多用于外表数据集成。
  • 再考虑复制表 Replicated 系列
  • 分布式表 Distributed 等,

3.Log 系列表引擎

Log 系列表引擎功能相对简单,主要用于快速写入小表(1 百万行左右的表),然后全部读出的场景,即一次写入,多次查询

Log 系列表引擎包含:

  • TinyLog、
  • StripeLog、
  • Log

几种 Log 表引擎的共性是:

  • 数据被顺序 append 写到本地磁盘上。

  • 不支持 delete、update 修改数据。

  • 不支持 index(索引)。

  • 不支持原子性写。如果某些操作(异常的服务器关闭)中断了写操作,则可能会获
    得带有损坏数据的表。

  • insert 会阻塞 select 操作。当向表中写入数据时,针对这张表的查询会被阻塞,
    直至写入动作结束。

它们彼此之间的区别是:

  • TinyLog:不支持并发读取数据文件,查询性能较差;格式简单,适合用来暂存
    中间数据。
  • StripLog:支持并发读取数据文件,查询性能比 TinyLog 好;将所有列存储在
    同一个大文件中,减少了文件个数。
  • Log:支持并发读取数据文件,查询性能比 TinyLog 好;每个列会单独存储在一
    个独立文件中。

在这里插入图片描述

3.1 TinyLog

TinyLog 是 Log 系列引擎中功能简单、性能较低的引擎。

  • 它的存储结构由数据文件和元数据两部分组成。其中,数据文件是按列独立存储的,也就是说每一个列字段都对应一个文件。
  • 由于 TinyLog 数据存储不分块,所以不支持并发数据读取,该引擎适合一次写入,多次读取的场景,对于处理小批量中间表的数据可以使用该引擎,这种引擎会有大量小文件,性能会低。

示例:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.2 StripeLog

相比 TinyLog 而言,StripeLog 数据存储会划分块,每次插入对应一个数据块,拥有更高的查询性能(拥有.mrk 标记文件,支持并行查询)

  • StripeLog 引擎将所有列存储在一个文件中,使用了更少的文件描述符。对每一次 Insert 请求,ClickHouse 将
    数据块追加在表文件的末尾,逐列写入。
  • StripeLog 引擎不支持 ALTER UPDATE 和 ALTER DELETE 操作。

示例:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.3 Log

Log 引擎表适用于临时数据,一次性写入、测试场景。Log 引擎结合了 TinyLog 表引擎和 StripeLog 表引擎的长处,是 Log 系列引擎中性能最高的表引擎。

  • Log 表引擎会将每一列都存在一个文件中,对于每一次的 INSERT 操作,会生成数据块
  • 经测试,数据块个数与当前节点的 core 数一致。

示例:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4.Special 系列表引擎

在这里插入图片描述

4.1 Memory

Memory 表引擎直接将数据保存在内存中,ClickHouse 中的 Memory 表引擎具有以下特点:

  • Memory 引擎以未压缩的形式将数据存储在 RAM 中,数据完全以读取时获得的形式存储。
  • 并发数据访问是同步的,锁范围小,读写操作不会相互阻塞。
  • 不支持索引。
  • 查询是并行化的,在简单查询上达到最大速率(超过 10 GB /秒),在相对较少的行(最多约 100,000,000)上有高性能的查询。
  • 没有磁盘读取,不需要解压缩或反序列化数据,速度更快(在许多情况下,与MergeTree 引擎的性能几乎一样高)。
  • 重新启动服务器时,表存在,但是表中数据全部清空
  • Memory 引擎多用于测试。

示例:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
注意:”Memory”表引擎写法固定,不能小写。同时创建好表 t_memory 后,在对应的磁盘目录/var/lib/clickhouse/data/newdb 下没有“t_memory”目录,基于内存存储,当重启 ClickHouse 服务后,表 t_memory 存在,但是表中数据全部清空。

4.2 Merge

Merge 引擎 (不要跟 MergeTree 引擎混淆) 本身不存储数据,但可用于同时从任意多个其他的表中读取数据,这里需要多个表的结构相同,并且创建的 Merge 引擎表的结构也需要和这些表结构相同才能读取。

  • 读是自动并行的,不支持写入
  • 读取时,那些被真正读取到数据的表如果设置了索引,索引也会被使用。
    在这里插入图片描述
    示例:
    在这里插入图片描述
    在这里插入图片描述

4.3 Distributed

Distributed 是== ClickHouse 中 分 布 式 引 擎== , 之 前 所 有 的 操 作 虽 然 说 是 在ClickHouse 集群中进行的,但是实际上是在 node1 节点中单独操作的,与 node2、node3无关,使用分布式引擎声明的表才可以在其他节点访问与操作。

Distributed 引擎和 Merge 引擎类似,本身不存放数据,功能是在不同的 server上把多张相同结构的物理表合并为一张逻辑表。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
示例:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
上面的语句中使用了 ON CLUSTER 分布式 DDL(数据库定义语言),这意味着在集群的每个分片节点上,都会创建一张 Distributed 表,这样便可以从其中任意一端发起对所有分片的读、写请求。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/387110.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Golang快速入门到实践学习笔记

Go学习笔记 1.基础 Go程序设计的一些规则 Go之所以会那么简洁,是因为它有一些默认的行为: 大写字母开头的变量是可导出的,也就是其它包可以读取 的,是公用变量;小写字母开头的就是不可导出的,是私有变量…

Python算法题集_二叉树的最大深度

Python算法题集_二叉树的最大深度 题104:二叉树的最大深度1. 示例说明2. 题目解析- 题意分解- 优化思路- 测量工具 3. 代码展开1) 标准求解【DFS自顶向下】2) 改进版一【DFS自底向上】3) 改进版二【BFS】 4. 最优算法 本文为Python算法题集之一的代码示例 题104&am…

现代化端口扫描工具RustScan

今天是大年初五,喜迎财神 ,祝大家✔️顺风顺水 ✔️诸事如意 ✔️财源滚滚 ✔️大吉大利 顺便提一下,老苏的博客启用了新域名: https://laosu.tech 什么是 RustScan ? RustScan 是一款现代化的端口扫描器。能快速找到端…

数学实验第三版(主编:李继成 赵小艳)课后练习答案(九)(1)(2)

实验九:线性函数极值求解 练习一 1.求解线性规划问题: (1)max z3,s.t. clc;clear; %采用软件解法 c[-3,-1]; a[-1,1;1,-2;3,2]; b[2;2;14]; [x,min]linprog(c,a,b)找到最优解。 x 4 1 min -13 题上要求的是最大值&#…

【从零到Offer】MySQL最左匹配

前言 ​ 相信大家在日常开发时,也经常能听到“最左匹配”这个词,那么什么是最左匹配呢?本篇文章就带你一起探索“最左匹配”的神奇秘密。 什么是最左匹配 ​ 最左匹配,通常指的是最左前缀匹配原则,即MySQL在检索数据…

c++ Qt 数据库操作

1、准备工作 Qt本身并没有数据库功能,但是Qt支持调用其他主流的数据库产品,并且这些数据库产品统一了Qt的接口,实际上是一种数据库的中间件。 Qt支持以下数据库类型: 嵌入式常用的数据库是sqlite3,本体只有几兆大小。非…

UnityShader玉石效果

效果: 代码: Shader "MyShader/Jade" {Properties{_DiffuseColor("漫反射颜色",color)(1,1,1,1)_ThicknessMap("厚度图",2d)"white"{}_AddColor("叠加颜色",color)(1,1,1,1)_CubeMap("环境贴图…

java实现多级目录树(递归实现)

一.应用场景 有时候需要我们后台给前台传树结构的数据,要怎么查询? 怎么返回数据呢? 二.数据库表设计以及数据内容(以部门举例) id 主键 parent_id 父级部门id depart_name 部门名词 sort 部门排序三.实体类 Data public…

Qt 软件封装与打包

1. Qt 软件封装 1、首先以 release 方式进行编译,将生成的 CloudOne.exe 文件复制到 D:\CloudApp 文件夹(自行创建) 2、打开 Qt 命令行工具(如下图所示),并按顺序输入如下指令 cd D:\CloudApp windeployq…

Spring Boot 笔记 019 创建接口_文件上传

1.1 创建阿里OSS bucket OSS Java SDK 兼容性和示例代码_对象存储(OSS)-阿里云帮助中心 (aliyun.com) 1.2 编写工具类 package com.geji.utils;import com.aliyun.oss.ClientException; import com.aliyun.oss.OSS; import com.aliyun.oss.OSSClientBuilder; import com.aliyun…

每日一题——数字翻转

题目; 这道题看似是很简单的回文数 实则就是很简单的回文数 但是需要注意的一点是负数 可以在开头就进行判断&#xff0c;如果N<0的话就令N-N&#xff0c;将所有数都转成正数就好办了 上代码&#xff1a; #include <iostream> #include<string> #include<…

算法沉淀——哈希算法(leetcode真题剖析)

算法沉淀——哈希算法 01.两数之和02.判定是否互为字符重排03.存在重复元素04.存在重复元素 II05.字母异位词分组 哈希算法&#xff08;Hash Algorithm&#xff09;是一种将任意长度的输入&#xff08;也称为消息&#xff09;映射为固定长度的输出的算法。这个输出通常称为哈希…

Spring Security学习(四)——登陆认证(包括自定义登录页)

前言 和前面的文章隔了很长时间才更新Spring Security系列&#xff0c;主要原因一个是之前太忙了&#xff0c;把项目都忙完了&#xff0c;赶上春节假期&#xff0c;就慢慢研究。Spring Security的体系非常复杂&#xff0c;一口吃不了热豆腐&#xff0c;没办法速成&#xff0c;…

微服务—ES数据同步

目录 数据同步 问题分析 方案1. 同步调用 方案2. 异步通知 方案3. 监听binlog​编辑 各方案对比 案例——利用MQ实现数据同步 步骤1. 导入hotel-admin项目 步骤2. 声明交换机、队列 步骤3. 发送MQ消息 步骤4. 接收MQ消息 步骤5. 测试同步功能 数据同步 elasticsea…

八、键盘响应

之前博文格式已经固定&#xff0c;这里就不在赘述了&#xff0c;直接把核心代码进行解释一下即可&#xff0c;仅作为小笔记而已 项目实现功能&#xff1a; 按下键盘0&#xff0c;显示原始图像 按下键盘1&#xff0c;显示原始图像的灰度图 按下键盘2&#xff0c;显示原始图像的…

Python-To-Do-List

今天跟着油管学习创建了简单的代办事项列表应用程序&#xff0c;使用了python的tkinter库来制作图形用户界面&#xff08;GUI&#xff09; 1. 导入tkinter库 python Copy code import tkinter from tkinter import * 这两行导入了tkinter模块&#xff0c;它是Python的标准GUI库…

六、Redis之数据持久化及高频面试题

6.1 数据持久化 官网文档地址&#xff1a;https://redis.io/docs/manual/persistence/ Redis提供了主要提供了 2 种不同形式的持久化方式&#xff1a; RDB&#xff08;Redis数据库&#xff09;&#xff1a;RDB 持久性以指定的时间间隔执行数据集的时间点快照。AOF&#xff0…

django CBV 与 DRF APIView源码分析

django CBV源码分析 在django框架中&#xff0c;视图层中的逻辑即可以使用函数处理也可以使用类进行处理&#xff0c;如果在视图层中使用函数处理请求&#xff0c;就是FBV(function base views)&#xff0c;如果在视图层中使用类处理请求&#xff0c;就是CBV(class base views…

微信,支付宝在线换钱平台系统源码

探索全新、全开源的在线换钱系统源码&#xff0c;它将以前所未有的方式改变您的支付体验。我们为您精心打造了一个集简单易用与安全高效于一身的优质产品&#xff0c;它采用最新的技术开发&#xff0c;为您带来前所未有的便捷与安心。 这款在线换钱系统源码设计直观&#xff0…

【大数据Hive】hive 表设计常用优化策略

目录 一、前言 二、hive 普通表查询原理 2.1 操作演示说明 2.1.1 创建一张表&#xff0c;并加载数据 2.1.2 统计3月24号的登录人数 2.1.3 查询原理过程总结 2.2 普通表结构带来的问题 三、hive分区表设计 3.1 区表结构 - 分区设计思想 3.2 操作演示 3.2.1 创建分区表…