C#,数值计算,矩阵的行列式(Determinant)、伴随矩阵(Adjoint)与逆矩阵(Inverse)的算法与源代码

本文发布矩阵(Matrix)的一些初级算法。

一、矩阵的行列式(Determinant)

矩阵行列式是指矩阵的全部元素构成的行列式,设A=(a)是数域P上的一个n阶矩阵,则所有A=(a)中的元素组成的行列式称为矩阵A的行列式,记为|A|或det(A)。若A,B是数域P上的两个n阶矩阵,k是P中的任一个数,则|AB|=|A||B|,|kA|=kⁿ|A|,|A*|=|A|,其中A*是A的伴随矩阵;若A是可逆矩阵,则|A|=|A|。
 

/// <summary>
/// 计算 A[p,q] 位于 [,]temp 的块辅因子
/// </summary>
/// <param name="matrix"></param>
/// <param name="temp"></param>
/// <param name="p"></param>
/// <param name="q"></param>
/// <param name="n"></param>
private static void BlockCofactor(double[,] matrix, ref double[,] temp, int p, int q, int n)
{
    int i = 0;
    int j = 0;

    for (int row = 0; row < n; row++)
    {
        for (int col = 0; col < n; col++)
        {
            if (row != p && col != q)
            {
                temp[i, j++] = matrix[row, col];
                if (j == (n - 1))
                {
                    j = 0;
                    i++;
                }
            }
        }
    }
}

/// <summary>
/// 求矩阵行列式(递归算法)
/// </summary>
/// <param name="N"></param>
/// <param name="matrix"></param>
/// <param name="n"></param>
/// <returns></returns>
public static double Determinant(int N, double[,] matrix, int n)
{
    if (n == 1)
    {
        return matrix[0, 0];
    }

    double D = 0.0;
    double[,] temp = new double[N, N];
    int sign = 1;
    for (int f = 0; f < n; f++)
    {
        BlockCofactor(matrix, ref temp, 0, f, n);
        D += sign * matrix[0, f] * Determinant(N, temp, n - 1);
        sign = -sign;
    }
    return D;
}
 

/// <summary>
/// 计算 A[p,q] 位于 [,]temp 的块辅因子
/// </summary>
/// <param name="matrix"></param>
/// <param name="temp"></param>
/// <param name="p"></param>
/// <param name="q"></param>
/// <param name="n"></param>
private static void BlockCofactor(double[,] matrix, ref double[,] temp, int p, int q, int n)
{
    int i = 0;
    int j = 0;

    for (int row = 0; row < n; row++)
    {
        for (int col = 0; col < n; col++)
        {
            if (row != p && col != q)
            {
                temp[i, j++] = matrix[row, col];
                if (j == (n - 1))
                {
                    j = 0;
                    i++;
                }
            }
        }
    }
}

/// <summary>
/// 求矩阵行列式(递归算法)
/// </summary>
/// <param name="N"></param>
/// <param name="matrix"></param>
/// <param name="n"></param>
/// <returns></returns>
public static double Determinant(int N, double[,] matrix, int n)
{
    if (n == 1)
    {
        return matrix[0, 0];
    }

    double D = 0.0;
    double[,] temp = new double[N, N];
    int sign = 1;
    for (int f = 0; f < n; f++)
    {
        BlockCofactor(matrix, ref temp, 0, f, n);
        D += sign * matrix[0, f] * Determinant(N, temp, n - 1);
        sign = -sign;
    }
    return D;
}

二、矩阵的伴随矩阵(Adjoint Matrix)

一个方形矩阵的伴随矩阵是一个类似于逆矩阵的概念。如果二维矩阵可逆,那么它的逆矩阵和它的伴随矩阵之间只差一个系数,对多维矩阵也存在这个规律。然而,伴随矩阵对不可逆的矩阵也有定义,并且不需要用到除法。
 

/// <summary>
/// 伴随矩阵
/// </summary>
/// <param name="A"></param>
/// <param name="adj"></param>
public static void Adjoint(double[,] matrix, out double[,] adjoint)
{
    int N = matrix.GetLength(0);
    adjoint = new double[N, N];

    if (N == 1)
    {
        adjoint[0, 0] = 1.0;
        return;
    }

    int sign = 1;
    double[,] temp = new double[N, N];
    for (int i = 0; i < N; i++)
    {
        for (int j = 0; j < N; j++)
        {
            BlockCofactor(matrix, ref temp, i, j, N);
            sign = ((i + j) % 2 == 0) ? 1 : -1;
            adjoint[j, i] = (sign) * (Determinant(N, temp, N - 1));
        }
    }
}

/// <summary>
/// 伴随矩阵
/// </summary>
/// <param name="A"></param>
/// <param name="adj"></param>
public static void Adjoint(double[,] matrix, out double[,] adjoint)
{
    int N = matrix.GetLength(0);
    adjoint = new double[N, N];

    if (N == 1)
    {
        adjoint[0, 0] = 1.0;
        return;
    }

    int sign = 1;
    double[,] temp = new double[N, N];
    for (int i = 0; i < N; i++)
    {
        for (int j = 0; j < N; j++)
        {
            BlockCofactor(matrix, ref temp, i, j, N);
            sign = ((i + j) % 2 == 0) ? 1 : -1;
            adjoint[j, i] = (sign) * (Determinant(N, temp, N - 1));
        }
    }
}

三、矩阵的逆矩阵(Inverse Matrix)

设A是一个n阶矩阵,若存在另一个n阶矩阵B,使得: AB=BA=E ,则称方阵A可逆,并称方阵B是A的逆矩阵。矩阵求逆,即求矩阵的逆矩阵。矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷。逆矩阵又是矩阵理论的很重要的内容,逆矩阵的求法自然也就成为线性代数研究的主要内容之一。

/// <summary>
/// 矩阵求逆
/// </summary>
/// <param name="A"></param>
/// <param name="inverse"></param>
/// <returns></returns>
public static bool Inverse(double[,] matrix, out double[,] inverse)
{
    int N = matrix.GetLength(0);
    inverse = new double[N, N];

    double det = Determinant(N, matrix, N);
    if (det == 0)
    {
        return false;
    }

    Adjoint(matrix, out double[,] adj);

    for (int i = 0; i < N; i++)
    {
        for (int j = 0; j < N; j++)
        {
            inverse[i, j] = adj[i, j] / (double)det;
        }
    }
    return true;
}
 

/// <summary>
/// 矩阵求逆
/// </summary>
/// <param name="A"></param>
/// <param name="inverse"></param>
/// <returns></returns>
public static bool Inverse(double[,] matrix, out double[,] inverse)
{
    int N = matrix.GetLength(0);
    inverse = new double[N, N];

    double det = Determinant(N, matrix, N);
    if (det == 0)
    {
        return false;
    }

    Adjoint(matrix, out double[,] adj);

    for (int i = 0; i < N; i++)
    {
        for (int j = 0; j < N; j++)
        {
            inverse[i, j] = adj[i, j] / (double)det;
        }
    }
    return true;
}

演算代码:

private void button1_Click(object sender, EventArgs e)
{
    double[,] A = { 
        {5, -2, 2, 7},
        {1, 0, 0, 3},
        {-3, 1, 5, 0},
        {3, -1, -9, 4}
    };

    double d = Algorithm_Gallery.Determinant(4, A, 4);

    StringBuilder sb = new StringBuilder();
    sb.Append(Welcome());
    sb.AppendLine("1、<b>原始矩阵</b>(Source Matrix):<br>");
    sb.Append(Algorithm_Gallery.ToHtml(A));
    sb.AppendLine("行列式(Determinant)=" + d + "<br>");
    
    Algorithm_Gallery.Adjoint(A, out double[,] adj);
    sb.AppendLine("<br>2、<b>伴随矩阵</b>(Adjoint Matrix):<br>");
    sb.Append(Algorithm_Gallery.ToHtml(adj));
    
    Algorithm_Gallery.Inverse(A, out double[,] inv);
    sb.AppendLine("<br>3、<b>逆矩阵</b>(Inverse Matrix):<br>");
    sb.Append(Algorithm_Gallery.ToHtml(inv));
    sb.Append(Bye());
    webBrowser1.DocumentText = sb.ToString();
}

private void button1_Click(object sender, EventArgs e)
{
    double[,] A = { 
        {5, -2, 2, 7},
        {1, 0, 0, 3},
        {-3, 1, 5, 0},
        {3, -1, -9, 4}
    };

    double d = Algorithm_Gallery.Determinant(4, A, 4);

    StringBuilder sb = new StringBuilder();
    sb.Append(Welcome());
    sb.AppendLine("1、<b>原始矩阵</b>(Source Matrix):<br>");
    sb.Append(Algorithm_Gallery.ToHtml(A));
    sb.AppendLine("行列式(Determinant)=" + d + "<br>");
    
    Algorithm_Gallery.Adjoint(A, out double[,] adj);
    sb.AppendLine("<br>2、<b>伴随矩阵</b>(Adjoint Matrix):<br>");
    sb.Append(Algorithm_Gallery.ToHtml(adj));
    
    Algorithm_Gallery.Inverse(A, out double[,] inv);
    sb.AppendLine("<br>3、<b>逆矩阵</b>(Inverse Matrix):<br>");
    sb.Append(Algorithm_Gallery.ToHtml(inv));
    sb.Append(Bye());
    webBrowser1.DocumentText = sb.ToString();
}

 打印矩阵的代码:


public static string ToHtml(double[,] y)
{
    int m = y.GetLength(0);
    int n = y.GetLength(1);
    StringBuilder sb = new StringBuilder();
    sb.AppendLine("<style>");
    sb.AppendLine("td { padding:5px;text-align:right; }");
    sb.AppendLine("</style>");
    sb.AppendLine("<table width='100%' border=1 bordercolor='#999999' style='border-collapse:collapse;'>");
    for (int i = 0; i < m; i++)
    {
        sb.AppendLine("<tr>");
        for (int j = 0; j < n; j++)
        {
            sb.AppendLine("<td>" + String.Format("{0:F8}", y[i, j]) + "</td>");
        }
        sb.AppendLine("</tr>");
    }
    sb.AppendLine("</table>");
    return sb.ToString();
}
 

————————————————————————————————

POWER BY  TRUFFER.CN 50018.COM 315SOFT.COM

public static string ToHtml(double[,] y)
{
    int m = y.GetLength(0);
    int n = y.GetLength(1);
    StringBuilder sb = new StringBuilder();
    sb.AppendLine("<style>");
    sb.AppendLine("td { padding:5px;text-align:right; }");
    sb.AppendLine("</style>");
    sb.AppendLine("<table width='100%' border=1 bordercolor='#999999' style='border-collapse:collapse;'>");
    for (int i = 0; i < m; i++)
    {
        sb.AppendLine("<tr>");
        for (int j = 0; j < n; j++)
        {
            sb.AppendLine("<td>" + String.Format("{0:F8}", y[i, j]) + "</td>");
        }
        sb.AppendLine("</tr>");
    }
    sb.AppendLine("</table>");
    return sb.ToString();
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/386656.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

仰暮计划|“​他们艰苦半生,但真的希望祖国安祥,山河无恙”

自述&#xff0c;自赎 我没有在那个年代生活过&#xff0c;我一出生就是盛世中国&#xff0c;看遍了祖国的大好河山。但我没想到&#xff0c;走了这么远的路&#xff0c;吃了这么多的苦的爷爷会一直跟我说“不是国家不好&#xff0c;只是中国的钱拿去还债了&#xff0c;过了那…

Linux释放内存

free -m是Linux上查看内存的指令&#xff0c;其中-m是以兆&#xff08;MB&#xff09;为单位&#xff0c;如果不加则以KB为单位。 如下图表示&#xff0c;&#xff08;total&#xff09;总物理内存是809MB&#xff0c;&#xff08;used&#xff09;已使用167MB&#xff0c;&…

零基础学Python(10)— 序列通用操作

前言&#xff1a;Hello大家好&#xff0c;我是小哥谈。本节课就带大家认识下Python语言中常见的序列通用操作&#xff01;~&#x1f308; 目录 &#x1f680;1.索引 &#x1f680;2.切片 &#x1f680;3.序列加法 &#x1f680;4.序列乘法 &#x1f680;5.检查某个元素是…

Python:Pygame游戏编程简述

Python是一种广泛使用的编程语言&#xff0c;它简洁、易懂并且功能强大。在Python的世界中&#xff0c;有许多库和模块可供选择&#xff0c;其中之一就是Pygame。Pygame是一个Python库&#xff0c;用于开发2D游戏&#xff0c;它提供了许多工具和函数&#xff0c;使得游戏开发变…

【2024年毕设系列】如何使用Anaconda和Pycharm

【2024年毕设系列】如何使用Anaconda和Pycharm 视频教程地址&#xff1a;【2024毕设系列】Anaconda和Pycharm如何使用_哔哩哔哩 Hi&#xff0c;各位好久不见&#xff0c;这里是肆十二&#xff0c;首先在这里给大伙拜年了。 诸位过完年之后估计又要开始为了大作业和毕业设计头疼…

移动机器人激光SLAM导航(五):Cartographer SLAM 篇

参考 Cartographer 官方文档Cartographer 从入门到精通 1. Cartographer 安装 1.1 前置条件 推荐在刚装好的 Ubuntu 16.04 或 Ubuntu 18.04 上进行编译ROS 安装&#xff1a;ROS学习1&#xff1a;ROS概述与环境搭建 1.2 依赖库安装 资源下载完解压并执行以下指令 https://pa…

CSRNET图像修复,DNN

CSRNET图像修复 CSRNET图像修复&#xff0c;只需要OPENCV的DNN

【安装指南】图床神器之Picgo下载、安装详细教程

&#x1f33c;一、概述 PicGo是一款开源的图片上传、管理工具&#xff0c;旨在帮助用户快速上传图片到云存储或图床&#xff0c;并提供链接方便在网页或其他应用中使用。它支持各种常见的图床服务商&#xff0c;如GitHub、七牛云、腾讯云等&#xff0c;并提供了简洁易用的界面和…

Vscode 在汇编文件中添加调试断点

Vscode 在汇编文件中添加调试断点 vscode默认不支持汇编文件添加断点, 可以在设置里面打开

软件实例分享,超市便利店进销存管理系统收银软件教程

软件实例分享&#xff0c;超市便利店进销存管理系统收银软件教程 一、前言 以下软件教程以 佳易王超市进销存管理软件V16.0为例说明 软件文件下载可以点击最下方官网卡片——软件下载——试用版软件下载 软件程序导航&#xff0c;系统设置&#xff1a;有管理员账号设置其他账…

前端工程化之:webpack3-5(css module)

目录 一、css module 1.思路 2.实现原理 3.如何应用样式 4.其他操作 &#xff08;1&#xff09;全局类名 &#xff08;2&#xff09;如何控制最终的类名 5.其他注意事项 一、css module 通过命名规范来限制类名太过死板&#xff0c;而 css in js 虽然足够灵活&…

Windows上Miniconda的安装:一步步教你从零开始

&#x1f680;Windows上Miniconda的安装&#xff1a;一步步教你从零开始&#x1f680; &#x1f335;文章目录&#x1f335; &#x1f333;引言&#x1f333;&#x1f333;二、Miniconda简介&#xff1a;开启您的数据科学之旅的得力助手&#xff01; &#x1f333;&#x1f333…

神经网络:卷积神经网络中的BatchNorm

一、BN介绍 1.原理 在机器学习中让输入的数据之间相关性越少越好&#xff0c;最好输入的每个样本都是均值为0方差为1。在输入神经网络之前可以对数据进行处理让数据消除共线性&#xff0c;但是这样的话输入层的激活层看到的是一个分布良好的数据&#xff0c;但是较深的激活层…

Java 集合

一、集合的框架体系&#xff08;重要&#xff0c;背&#xff01;&#xff01;&#xff01;&#xff09; 1.Collection&#xff08;单列集合&#xff09; 2.Map&#xff08;双列集合&#xff09; 二、Collection接口 1.特点 使用了Collection接口的子类 可以存放多个元素&am…

C语言学习day12:for循环

前面学了dowhile循环&#xff0c;今天我们来学习经常用到的for循环&#xff1a; for循环&#xff1a; 例子&#xff1a; int main() {//int i;for (int i 0; i < 10;i) {printf("%d\n",i);};system("pause");return EXIT_SUCCESS; } 解释&#xff…

高中数学:不等式

一、性质 1、同向可加性 2、同向同正可乘 3、正数乘方开方&#xff08;n∈Z&#xff0c;n≥2&#xff09; 常见题型 1、比较大小 分式比较大小&#xff0c;先去分母作差法比较大小带根号的无理数比较大小&#xff0c;直接两边开方因式分解&#xff08;较难&#xff09; 2、…

PhP+vue企业原材料采购系统_cxg0o

伴随着我国社会的发展&#xff0c;人民生活质量日益提高。互联网逐步进入千家万户&#xff0c;改变传统的管理方式&#xff0c;原材料采购系统以互联网为基础&#xff0c;利用php技术&#xff0c;结合vue框架和MySQL数据库开发设计一套原材料采购系统&#xff0c;提高工作效率的…

Vue项目创建和nodejs使用

Vue项目创建和nodejs使用 一、环境准备1.1.安装 node.js【下载历史版本node-v14.21.3-x64】1.2.安装1.3.检查是否安装成功&#xff1a;1.4.在Node下新建两个文件夹 node_global和node_cache并设置权限1.5.配置npm在安装全局模块时的路径和缓存cache的路径1.6.配置系统变量&…

L2-015 互评成绩

一、题目 二、解题思路 去掉一个最高分和一个最低分&#xff1a;在输入的时候找出每个同学的最大值和最小值&#xff0c;index1[n],index2[n] 两个数组分别记录每个同学的最大值和最小值对应的下标。注意可能会有多个最大值或有多个最小值&#xff0c;也可能最大值和最小值相同…