【大厂AI课学习笔记】【1.6 人工智能基础知识】(4)深度学习和机器学习

关于深度学习和机器学习,出来包含关系之外,还有如上总结的知识点。

分别从特征处理、学习方法、数据依赖、硬件依赖等4个方面,进行了总结。

从特征处理上看:深度学习从数据中习得高级特征,并自行创建新的特征。这比普通的机器学习,更少的人工特征训练的参与,机器更加自主的学习。人既是加快了机器学习的性能,但同时也是束缚,要想解决更多的问题,获得更高级的智能,目前这是较好的出路。

从学习方法上看:深度学习通过端到端的解决问题,来完成学习过程。有额就是只管输入和输出这两端,不需要将学习过程分为较小的步骤,然后再去合并输出。

从数据依赖上看:深度学习需要使用大量的数据,由于是自发的学习,很多时候可解释性并不好。而普通的机器学习,由于监督学习等的方法存在,很多数据是带着任务出发,特征维度和标签一起给的,因此可解释性非常好。

从硬件依赖上看:深度学习需要大量的算力,GPU的出现,让深度学习更加的如虎添翼。普通的机器学习,可能较小的算力就能实现。

 

 上图中,特别明显的表达了,深度学习,利用神经网络模型作为算法,且只关心端到端的输入和输出。

更多背景知识:

相同点:

  1. 都是基于数据的算法:机器学习和深度学习都是从数据中学习规律或模式的算法。它们通过分析输入数据,提取有用的特征,并基于这些特征进行预测或决策。

  2. 都需要训练和优化:无论是机器学习还是深度学习,都需要通过训练来优化模型的参数,以提高模型的预测或决策能力。训练过程中,算法会不断地调整参数,以最小化预测误差或最大化性能指标。

  3. 都可应用于多种任务:机器学习和深度学习都可以应用于多种任务,如分类、回归、聚类、降维、生成等。这些任务在各个领域都有广泛的应用,如自然语言处理、图像识别、语音识别、推荐系统等。

不同点:

  1. 模型的复杂度不同:机器学习模型通常比较简单,如线性回归、决策树、支持向量机等。这些模型可以快速地训练和优化,但对于复杂的问题可能无法达到很高的准确率。而深度学习模型则非常复杂,通常由大量的神经元和层组成。这些模型需要更多的数据和计算资源来训练,但可以处理更复杂的问题,并达到更高的准确率。

  2. 特征工程的需求不同:在机器学习中,特征工程是非常重要的一步,需要手动提取和选择有用的特征。这需要领域知识和经验,并且非常耗时。而在深度学习中,特征提取是自动完成的,模型可以自动学习从原始数据中提取有用的特征。这使得深度学习在处理高维和复杂数据时更加有效。

  3. 可解释性的差异:机器学习模型通常比较直观,易于理解和解释。例如,决策树模型可以直观地展示决策过程。而深度学习模型则非常复杂,难以理解和解释。这使得深度学习在某些需要解释性的场景中(如医疗、金融等)的应用受到一定的限制。

  4. 对数据和计算资源的需求不同:由于深度学习模型的复杂性,它们通常需要更多的数据和计算资源来训练。这使得深度学习的应用受到了一定的限制,特别是在数据稀缺或计算资源有限的情况下。而机器学习模型则相对较轻量级,可以在较小的数据集上训练,并且对计算资源的需求较低。

总的来说,机器学习和深度学习在很多方面有相似之处,但也有很多不同之处。选择使用哪种方法取决于具体的应用场景、数据规模和计算资源等因素。在实际应用中,我们可以根据问题的复杂度和需求来选择合适的算法和模型。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/383243.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【AI绘图】初见·小白入门stable diffusion的初体验

首先,感谢赛博菩萨秋葉aaaki的整合包 上手 stable diffusion还是挺好上手的(如果使用整合包的话),看看界面功能介绍简单写几个prompt就能生成图片了。 尝试 我在网上找了一张赛博朋克边缘行者Lucy的cos图,可能会侵…

[ai笔记3] ai春晚观后感-谈谈ai与艺术

欢迎来到文思源想的ai空间,这是技术老兵重学ai以及成长思考的第3篇分享! 今天我们不聊技术,只聊感受! 1 关于ai春晚 期待许久的ai春晚,但是等初一晚上观看的时候,或多或少还是有些失望。 首先是观看人数…

利用Python和pandas库进行股票技术分析:移动平均线和MACD指标

利用Python和pandas库进行股票技术分析:移动平均线和MACD指标 介绍准备工作数据准备计算移动平均线计算MACD指标结果展示完整代码演示 介绍 在股票市场中,技术分析是一种常用的方法,它通过对股票价格和交易量等历史数据的分析,来…

《UE5_C++多人TPS完整教程》学习笔记7 ——《P8 为项目配置 Steam(Configuring A Project for Steam)》

本文为B站系列教学视频 《UE5_C多人TPS完整教程》 —— 《P8 为项目配置 Steam(Configuring A Project for Steam)》 的学习笔记,该系列教学视频为 Udemy 课程 《Unreal Engine 5 C Multiplayer Shooter》 的中文字幕翻译版,UP主&…

数据结构——6.1 图的基本概念

第六章 图 6.1 图的基本概念 概念 图的概念:G由点集V和边集E构成,记为G(V,E),边集可以为空,但是点集不能为空 注意:线性表可以是空表,树可以是空树,但图不可以是空,即V一定是非空集…

《动手学深度学习(PyTorch版)》笔记8.5

注:书中对代码的讲解并不详细,本文对很多细节做了详细注释。另外,书上的源代码是在Jupyter Notebook上运行的,较为分散,本文将代码集中起来,并加以完善,全部用vscode在python 3.9.18下测试通过&…

基于Linux操作系统的Docker容器安装MySQL随笔

1、在Linux上安装Docker容器 cd /etc/yum.repos.d/ curl -O https://download.docker.com/linux/centos/docker-ce.repo sed -i s/$releasever/8/g docker-ce.repo yum install -y docker-ce 2、修改Docker默认镜像仓库,然后启动Docker容器 sudo mkdir -p /etc/do…

栈和队列(Stack、Queue)

目录 前言: 栈: 栈的方法: 栈的源码: 队列: Queue和Deque接口: 队列的一些方法: Queue源码: 双端队列: 总结: 前言: 栈其实就是吃了吐…

ChatGPT4 教你如何完成SQL的实践应用

对数据库的各项应用与操作都离不开SQL来对数据进行增删改查。 例如 : 有一张某公司职员信息表如下: 需求1:在公司职员信息表中,请统计各部门,各岗位下的员工人数。 如果这个SQL语句不会写或者不知道怎么操作可以交给…

蓝桥杯2023年真题(1)

1.分糖果 #include <iostream> using namespace std; int a 9, b 16, c 7, d 2, e 5; int ans 0; //u是当前第几个分糖果的小朋友&#xff0c;x和y是还剩的糖果 void dfs(int u, int x, int y){if(u > c){//如果都为0&#xff0c;就是已经分完了if(!x &&…

【MySQL】—— 学习日期函数计算员工入职时间并进行倒排

&#x1f308;个人主页: Aileen_0v0 &#x1f525;热门专栏: 华为鸿蒙系统学习|计算机网络|数据结构与算法 ​&#x1f4ab;个人格言:“没有罗马,那就自己创造罗马~” #mermaid-svg-Rry9CmFGqnDVdoiQ {font-family:"trebuchet ms",verdana,arial,sans-serif;font-siz…

vue之elementUi的el-select同时获取value和label的两种方法

一、通过ref的形式&#xff08;推荐&#xff09; <template><div class"root"><el-selectref"optionRef"v-model"value"placeholder"请选择"style"width: 250px"><el-optionv-for"item in optio…

Java:集合以及集合进阶 --黑马笔记

一、集合概述和分类 1.1 集合的分类 除了ArrayList集合&#xff0c;Java还提供了很多种其他的集合&#xff0c;如下图所示&#xff1a; 我想你的第一感觉是这些集合好多呀&#xff01;但是&#xff0c;我们学习时会对这些集合进行分类学习&#xff0c;如下图所示&#xff1a;…

Spring AI - 使用向量数据库实现检索式AI对话

Spring AI - 使用向量数据库实现检索式AI对话 Spring AI 并不仅限于针对大语言模型对话API进行了统一封装&#xff0c;它还可以通过简单的方式实现LangChain的一些功能。本篇将带领读者实现一个简单的检索式AI对话接口。 一、需求背景 在一些场景下&#xff0c;我们想让AI根据…

【python】网络爬虫与信息提取--requests库

导学 当一个软件想获得数据&#xff0c;那么我们只有把网站当成api就可以 requests库:自动爬取HTML页面&#xff0c;自动网络请求提交 robots协议&#xff1a;网络爬虫排除标准&#xff08;网络爬虫的规则&#xff09; beautiful soup库&#xff1a;解析HTML页面 工具&…

【安装记录】安装 netperf 和 perf

这是一篇发疯随笔X.X 我的环境是虚拟机debian12&#xff0c;出于种种原因&#xff0c;之前直接使用apt-get install netperf apt-get install perf指令直接安装&#xff0c;报错找不到包 然后上网搜了一堆教程&#xff0c;有说下载netperf源码编译的&#xff0c;那些教程里面有…

SPSS双变量相关分析

双变量相关分析通过计算皮尔逊简单相关系数、斯皮尔曼等级相关系数、肯德尔等级相关系数及其显著性水平展开。其中皮尔逊简单相关系数是一种线性关联度量&#xff0c;适用于变量为定量连续变量且服从正态分布、相关关系为线性时的情形。如果变量不是正态分布的&#xff0c;或具…

Windows安全中心显示页面不可用

2024年2月过年当天重装电脑之后&#xff0c;第二天&#xff08;还是第三天&#xff09;安全中心开始提示如标题所示的问题。 问题环境 Windows 11 家庭中文版23H2安装日期2024/‎2/‎10 我解决之前没有截图&#xff0c;所以此处放一个别人的图做示例。 实际解决方式 搜索了…

假期刷题打卡--Day29

1、MT1224棋盘 求一个N*N棋盘中的方块总数。 格式 输入格式&#xff1a; 输入整型N 输出格式&#xff1a; 输出整型 样例 1 输入&#xff1a; 2输出&#xff1a; 5备注 考虑到取值范围&#xff0c;可用long整型定义变量 分析过程 这个题目的意思是&#xff0c;在这…

失去中国市场的三星仍是全球第一,但中国手机无法失去海外市场

随着2023年分析机构公布全球手机市场和中国手机市场的数据&#xff0c;业界终于看清中国市场早已没有以前那么重要&#xff0c;三星、苹果这些国际品牌对中国市场的依赖没有他们想象的那么严重&#xff0c;相反中国手机对海外市场比以往任何时候都要更依赖了。 三星在2023年被苹…