《动手学深度学习(PyTorch版)》笔记8.5

注:书中对代码的讲解并不详细,本文对很多细节做了详细注释。另外,书上的源代码是在Jupyter Notebook上运行的,较为分散,本文将代码集中起来,并加以完善,全部用vscode在python 3.9.18下测试通过,同时对于书上部分章节也做了整合。

Chapter8 Recurrent Neural Networks

8.5 Implementation of RNN from Scratch

8.5.1 Model Defining

import math
import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l
import matplotlib.pyplot as plt

batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)

#每个词元都表示为一个数字索引,但将这些索引直接输入神经网络可能会使学习变得困难。
#最简单的表示称为独热编码(one-hot encoding),即将每个索引映射为相互不同的单位向量:
#假设词表中不同词元的数目为N(即len(vocab)),词元索引的范围为0到N-1。
#如果词元的索引是整数i,那么我们将创建一个长度为N的全0向量,并将第i处的元素设置为1。
F.one_hot(torch.tensor([0, 2]), len(vocab))#索引为0和2的独热向量

X = torch.arange(10).reshape((2, 5))
print(F.one_hot(X.T, 28).shape)#形状为(时间步数,批量大小,词表大小)

def get_params(vocab_size, num_hiddens, device):
    num_inputs = num_outputs = vocab_size

    def normal(shape):
        return torch.randn(size=shape, device=device) * 0.01

    # 隐藏层参数
    W_xh = normal((num_inputs, num_hiddens))
    W_hh = normal((num_hiddens, num_hiddens))
    b_h = torch.zeros(num_hiddens, device=device)
    # 输出层参数
    W_hq = normal((num_hiddens, num_outputs))
    b_q = torch.zeros(num_outputs, device=device)
    # 附加梯度
    params = [W_xh, W_hh, b_h, W_hq, b_q]
    for param in params:
        param.requires_grad_(True)
    return params

def init_rnn_state(batch_size, num_hiddens, device):
    return (torch.zeros((batch_size, num_hiddens), device=device), )

def rnn(inputs, state, params):
    # inputs的形状:(时间步数量,批量大小,词表大小)
    W_xh, W_hh, b_h, W_hq, b_q = params
    H, = state
    outputs = []
    # X的形状:(批量大小,词表大小)
    for X in inputs:
        H = torch.tanh(torch.mm(X, W_xh) + torch.mm(H, W_hh) + b_h)
        Y = torch.mm(H, W_hq) + b_q
        outputs.append(Y)
    return torch.cat(outputs, dim=0), (H,)

class RNNModelScratch: #@save
    """从零开始实现的循环神经网络模型"""
    def __init__(self, vocab_size, num_hiddens, device,
                get_params, init_state, forward_fn):
        self.vocab_size, self.num_hiddens = vocab_size, num_hiddens
        self.params = get_params(vocab_size, num_hiddens, device)
        self.init_state, self.forward_fn = init_state, forward_fn

    def __call__(self, X, state):
        X = F.one_hot(X.T, self.vocab_size).type(torch.float32)
        return self.forward_fn(X, state, self.params)

    def begin_state(self, batch_size, device):
        return self.init_state(batch_size, self.num_hiddens, device)
    
num_hiddens = 512
net = RNNModelScratch(len(vocab), num_hiddens, d2l.try_gpu(), get_params,
                    init_rnn_state, rnn)
state = net.begin_state(X.shape[0], d2l.try_gpu())
Y, new_state = net(X.to(d2l.try_gpu()), state)
print(Y.shape, len(new_state), new_state[0].shape)#隐状态形状不变,仍为(批量大小,隐藏单元数)

def predict_ch8(prefix, num_preds, net, vocab, device):  #@save
    """在prefix后面生成新字符"""
    state = net.begin_state(batch_size=1, device=device)
    outputs = [vocab[prefix[0]]]
    get_input = lambda: torch.tensor([outputs[-1]], device=device).reshape((1, 1))
    #get_input()将outputs列表中的最后一个字符的整数标识输入网络
    for y in prefix[1:]:  # 预热期
        _, state = net(get_input(), state)
        outputs.append(vocab[y])
    for _ in range(num_preds):  # 预测num_preds步
        y, state = net(get_input(), state)
        outputs.append(int(y.argmax(dim=1).reshape(1)))
    return ''.join([vocab.idx_to_token[i] for i in outputs])

predict_ch8('time traveller ', 10, net, vocab, d2l.try_gpu())#由于还没有训练网络,会生成荒谬的预测结果

8.5.2 Gradient Clipping

对于长度为 T T T的序列,在迭代中计算这 T T T个时间步上的梯度,将会在反向传播过程中产生长度为 O ( T ) \mathcal{O}(T) O(T)的矩阵乘法链。当 T T T较大时,它可能导致数值不稳定,例如可能导致梯度爆炸或梯度消失。假定在向量形式的 x \mathbf{x} x中,或者在小批量数据的负梯度 g \mathbf{g} g方向上,使用 η > 0 \eta > 0 η>0作为学习率时,在一次迭代中,我们将 x \mathbf{x} x更新为 x − η g \mathbf{x} - \eta \mathbf{g} xηg。如果我们进一步假设目标函数 f f f表现良好,即函数 f f f在常数 L L L利普希茨连续(Lipschitz continuous),也就是说,对于任意 x \mathbf{x} x y \mathbf{y} y我们有:

∣ f ( x ) − f ( y ) ∣ ≤ L ∥ x − y ∥ . |f(\mathbf{x}) - f(\mathbf{y})| \leq L \|\mathbf{x} - \mathbf{y}\|. f(x)f(y)Lxy∥.

在这种情况下,我们可以安全地假设:如果我们通过 η g \eta \mathbf{g} ηg更新参数向量,则

∣ f ( x ) − f ( x − η g ) ∣ ≤ L η ∥ g ∥ , |f(\mathbf{x}) - f(\mathbf{x} - \eta\mathbf{g})| \leq L \eta\|\mathbf{g}\|, f(x)f(xηg)Lηg,

这意味着变化不会超过 L η ∥ g ∥ L \eta \|\mathbf{g}\| Lηg的,坏的方面是限制了取得进展的速度;好的方面是限制了事情变糟的程度。有时梯度可能很大,使得优化算法可能无法收敛,我们可以通过降低 η \eta η的学习率来解决这个问题。但是如果很少得到大的梯度,一个替代方案是通过将梯度 g \mathbf{g} g投影回给定半径(例如 θ \theta θ)的球来截断梯度 g \mathbf{g} g,如下式:

g ← min ⁡ ( 1 , θ ∥ g ∥ ) g . \mathbf{g} \leftarrow \min\left(1, \frac{\theta}{\|\mathbf{g}\|}\right) \mathbf{g}. gmin(1,gθ)g.

上式使得梯度范数永远不会超过 θ \theta θ,并且更新后的梯度完全与 g \mathbf{g} g的原始方向对齐。它还有一个作用,即限制任何给定的小批量数据(以及其中任何给定的样本)对参数向量的影响,这赋予了模型一定程度的稳定性。

def grad_clipping(net, theta):  #@save
    """截断梯度"""
    if isinstance(net, nn.Module):
        params = [p for p in net.parameters() if p.requires_grad]
    else:
        params = net.params
    norm = torch.sqrt(sum(torch.sum((p.grad ** 2)) for p in params))
    if norm > theta:
        for param in params:
            param.grad[:] *= theta / norm

8.5.3 Training

下面训练模型的方式与3.6有三个不同之处:

  1. 序列数据的不同采样方法(随机采样和顺序分区)将导致隐状态初始化的差异。
    使用顺序分区时,只在每个迭代周期的开始位置初始化隐状态,由于下一个小批量数据中的第 i i i个子序列样本与当前第 i i i个子序列样本相邻,因此当前小批量数据最后一个样本的隐状态将用于初始化下一个小批量数据第一个样本的隐状态。这样,存储在隐状态中的序列的历史信息可以在一个迭代周期内流经相邻的子序列,然而在任何一点隐状态的计算,都依赖于同一迭代周期中前面所有的小批量数据,这使得梯度计算变得复杂。为了降低计算量,在处理任何一个小批量数据之前,我们先分离梯度,使得隐状态的梯度计算总是限制在一个小批量数据的时间步内。当使用随机抽样时,需要为每个迭代周期重新初始化隐状态因为每个样本都是在一个随机位置抽样的。
  2. 在更新模型参数之前截断梯度,目的是使得即使训练过程中某个点上发生了梯度爆炸,也能保证模型收敛。
  3. 用困惑度来评价模型,确保了不同长度的序列具有可比性。

代码如下:

def train_epoch_ch8(net, train_iter, loss, updater, device, use_random_iter):#@save
    """训练网络一个迭代周期"""
    state, timer = None, d2l.Timer()
    metric = d2l.Accumulator(2)  # 训练损失之和,词元数量
    for X, Y in train_iter:
        if state is None or use_random_iter:
            # 在第一次迭代或使用随机抽样时初始化state
            state = net.begin_state(batch_size=X.shape[0], device=device)
        else:
            if isinstance(net, nn.Module) and not isinstance(state, tuple):
                # state对于nn.GRU是个张量
                state.detach_()
            else:
                # state对于nn.LSTM或对于我们从零开始实现的模型是个张量
                for s in state:
                    s.detach_()
        y = Y.T.reshape(-1)
        X, y = X.to(device), y.to(device)
        y_hat, state = net(X, state)
        l = loss(y_hat, y.long()).mean()
        if isinstance(updater, torch.optim.Optimizer):
            updater.zero_grad()
            l.backward()
            grad_clipping(net, 1)
            updater.step()
        else:
            l.backward()
            grad_clipping(net, 1)
            # 因为已经调用了mean函数
            updater(batch_size=1)
        metric.add(l * y.numel(), y.numel())#y.numel()返回y中元素的数量
    return math.exp(metric[0] / metric[1]), metric[1] / timer.stop()

def train_ch8(net, train_iter, vocab, lr, num_epochs, device,use_random_iter=False):#@save
    """训练模型"""
    loss = nn.CrossEntropyLoss()
    animator = d2l.Animator(xlabel='epoch', ylabel='perplexity',
                            legend=['train'], xlim=[10, num_epochs])
    # 初始化
    if isinstance(net, nn.Module):
        updater = torch.optim.SGD(net.parameters(), lr)
    else:
        updater = lambda batch_size: d2l.sgd(net.params, lr, batch_size)
    predict = lambda prefix: predict_ch8(prefix, 50, net, vocab, device)
    # 训练和预测
    for epoch in range(num_epochs):
        ppl, speed = train_epoch_ch8(net, train_iter, loss, updater, device, use_random_iter)
        if (epoch + 1) % 10 == 0:
            print(predict('time traveller'))
            animator.add(epoch + 1, [ppl])
    print(f'困惑度 {ppl:.1f}, {speed:.1f} 词元/秒 {str(device)}')
    print(predict('time traveller'))
    print(predict('traveller'))
    
num_epochs, lr = 500, 1

#使用顺序分区
train_ch8(net, train_iter, vocab, lr, num_epochs, d2l.try_gpu())
#使用随机抽样
net = RNNModelScratch(len(vocab), num_hiddens, d2l.try_gpu(), get_params,init_rnn_state, rnn)
train_ch8(net, train_iter, vocab, lr, num_epochs, d2l.try_gpu(),use_random_iter=True)
plt.show()

顺序分区训练结果:
在这里插入图片描述

随机抽样训练结果:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/383234.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

基于Linux操作系统的Docker容器安装MySQL随笔

1、在Linux上安装Docker容器 cd /etc/yum.repos.d/ curl -O https://download.docker.com/linux/centos/docker-ce.repo sed -i s/$releasever/8/g docker-ce.repo yum install -y docker-ce 2、修改Docker默认镜像仓库,然后启动Docker容器 sudo mkdir -p /etc/do…

栈和队列(Stack、Queue)

目录 前言: 栈: 栈的方法: 栈的源码: 队列: Queue和Deque接口: 队列的一些方法: Queue源码: 双端队列: 总结: 前言: 栈其实就是吃了吐…

ChatGPT4 教你如何完成SQL的实践应用

对数据库的各项应用与操作都离不开SQL来对数据进行增删改查。 例如 : 有一张某公司职员信息表如下: 需求1:在公司职员信息表中,请统计各部门,各岗位下的员工人数。 如果这个SQL语句不会写或者不知道怎么操作可以交给…

蓝桥杯2023年真题(1)

1.分糖果 #include <iostream> using namespace std; int a 9, b 16, c 7, d 2, e 5; int ans 0; //u是当前第几个分糖果的小朋友&#xff0c;x和y是还剩的糖果 void dfs(int u, int x, int y){if(u > c){//如果都为0&#xff0c;就是已经分完了if(!x &&…

【MySQL】—— 学习日期函数计算员工入职时间并进行倒排

&#x1f308;个人主页: Aileen_0v0 &#x1f525;热门专栏: 华为鸿蒙系统学习|计算机网络|数据结构与算法 ​&#x1f4ab;个人格言:“没有罗马,那就自己创造罗马~” #mermaid-svg-Rry9CmFGqnDVdoiQ {font-family:"trebuchet ms",verdana,arial,sans-serif;font-siz…

vue之elementUi的el-select同时获取value和label的两种方法

一、通过ref的形式&#xff08;推荐&#xff09; <template><div class"root"><el-selectref"optionRef"v-model"value"placeholder"请选择"style"width: 250px"><el-optionv-for"item in optio…

Java:集合以及集合进阶 --黑马笔记

一、集合概述和分类 1.1 集合的分类 除了ArrayList集合&#xff0c;Java还提供了很多种其他的集合&#xff0c;如下图所示&#xff1a; 我想你的第一感觉是这些集合好多呀&#xff01;但是&#xff0c;我们学习时会对这些集合进行分类学习&#xff0c;如下图所示&#xff1a;…

Spring AI - 使用向量数据库实现检索式AI对话

Spring AI - 使用向量数据库实现检索式AI对话 Spring AI 并不仅限于针对大语言模型对话API进行了统一封装&#xff0c;它还可以通过简单的方式实现LangChain的一些功能。本篇将带领读者实现一个简单的检索式AI对话接口。 一、需求背景 在一些场景下&#xff0c;我们想让AI根据…

【python】网络爬虫与信息提取--requests库

导学 当一个软件想获得数据&#xff0c;那么我们只有把网站当成api就可以 requests库:自动爬取HTML页面&#xff0c;自动网络请求提交 robots协议&#xff1a;网络爬虫排除标准&#xff08;网络爬虫的规则&#xff09; beautiful soup库&#xff1a;解析HTML页面 工具&…

【安装记录】安装 netperf 和 perf

这是一篇发疯随笔X.X 我的环境是虚拟机debian12&#xff0c;出于种种原因&#xff0c;之前直接使用apt-get install netperf apt-get install perf指令直接安装&#xff0c;报错找不到包 然后上网搜了一堆教程&#xff0c;有说下载netperf源码编译的&#xff0c;那些教程里面有…

SPSS双变量相关分析

双变量相关分析通过计算皮尔逊简单相关系数、斯皮尔曼等级相关系数、肯德尔等级相关系数及其显著性水平展开。其中皮尔逊简单相关系数是一种线性关联度量&#xff0c;适用于变量为定量连续变量且服从正态分布、相关关系为线性时的情形。如果变量不是正态分布的&#xff0c;或具…

Windows安全中心显示页面不可用

2024年2月过年当天重装电脑之后&#xff0c;第二天&#xff08;还是第三天&#xff09;安全中心开始提示如标题所示的问题。 问题环境 Windows 11 家庭中文版23H2安装日期2024/‎2/‎10 我解决之前没有截图&#xff0c;所以此处放一个别人的图做示例。 实际解决方式 搜索了…

假期刷题打卡--Day29

1、MT1224棋盘 求一个N*N棋盘中的方块总数。 格式 输入格式&#xff1a; 输入整型N 输出格式&#xff1a; 输出整型 样例 1 输入&#xff1a; 2输出&#xff1a; 5备注 考虑到取值范围&#xff0c;可用long整型定义变量 分析过程 这个题目的意思是&#xff0c;在这…

失去中国市场的三星仍是全球第一,但中国手机无法失去海外市场

随着2023年分析机构公布全球手机市场和中国手机市场的数据&#xff0c;业界终于看清中国市场早已没有以前那么重要&#xff0c;三星、苹果这些国际品牌对中国市场的依赖没有他们想象的那么严重&#xff0c;相反中国手机对海外市场比以往任何时候都要更依赖了。 三星在2023年被苹…

【Linux】模块参数

&#x1f525;博客主页&#xff1a;PannLZ &#x1f38b;系列专栏&#xff1a;《Linux系统之路》 &#x1f94a;不要让自己再留有遗憾&#xff0c;加油吧&#xff01; 模块参数 像用户程序一样&#xff0c;内核模块也可以接受命令行参数。首先应该声明用于保存命令行参数值的变…

Spring Native 解放 JVM

一、Spring Native 是什么 Spring Native可以通过GraalVM将Spring应用程序编译成原生镜像&#xff0c;提供了一种新的方式来部署Spring应用。与Java虚拟机相比&#xff0c;原生镜像可以在许多场景下降低工作负载&#xff0c;包括微服务&#xff0c;函数式服务&#xff0c;非常…

一、西瓜书——绪论

第一章 绪论 1.独立同分布 通常 假设 样本空间 中 全 体样 本 服 从 一 个 未 知 “ 分 布 ” ( d i s t r i b u t i o n ) D , 我们获得的每个样本都是独立地从这个分布上采样获得的&#xff0c; 即 “ 独 立同 分布 ” ( i n d e p e n d e n t a n d i d e n t ic a …

配置VMware实现从服务器到虚拟机的一键启动脚本

正文共&#xff1a;1666 字 15 图&#xff0c;预估阅读时间&#xff1a;2 分钟 首先祝大家新年快乐&#xff01;略备薄礼&#xff0c;18000个红包封面来讨个开年好彩头&#xff01; 虽然之前将服务器放到了公网&#xff08;成本增加了100块&#xff0c;内网服务器上公网解决方案…

二叉树和堆(优先队列)

前言&#xff1a; 本章会讲解二叉树及其一些相关练习题&#xff0c;和堆是什么。 二叉树&#xff1a; 二叉树的一些概念&#xff1a; 一棵二叉树是有限节点的集合&#xff0c;该集合可能为空。二叉树的特点是每一个节点最多有两个子树&#xff0c;即二叉树不存在度大于2的节点…

红包封面的流量是真的大啊

你好&#xff0c;我是小生&#xff0c;一个程序员转型做自媒体副业中~ 昨天&#xff0c;是农历 2023 年最后一天&#xff0c;到下午饭后的时候&#xff0c;红包封面流量推上了高峰期&#xff0c;非常的狂暴&#xff0c;有要烟花封面的、有要金龙封面的、有要表白封面的等等。 小…