AI大模型学习笔记之四:生成式人工智能(AIGC)是如何工作的?

OpenAI 发布 ChatGPT 已经1年多了,生成式人工智能(AIGC)也已经广为人知,我们常常津津乐道于 ChatGPT 和 Claude 这样的人工智能系统能够神奇地生成文本与我们对话,并且能够记忆上下文情境。

GPT-4

Midjunery和DALL·E 这样的AI绘图软件可以通过Prompt 输入文本提示生成多张令人惊艳的美图,看起来相当神奇。

Midjunery V6

但是,你有没有想过,生成式人工智能(AIGC)究竟是怎么运作的呢?在这篇文章里,我们就来简单了解一下生成式人工智能技术(AIGC)的基本原理,看看它到底能做些什么,还有啥时候你可能不太想依赖它。

一、从有监督学习到生成式人工智能

大多数传统类型的人工智能(如判别式人工智能)都是为了对现有数据进行分类或归类而设计的。相反,生成式人工智能模型的目标是生成前所未见的完全原创的人工制品。

在今天,有监督学习(Supervised Learning)和生成式人工智能(Generative Artificial Intelligence)是当今人工智能领域的两个最重要领域,其重点是创建算法和模型,以便从训练数据集生成与模式相似的新的真实数据。
在这里插入图片描述

生成式人工智能模型经过训练,可以从庞大的数据集中学习其中的潜在模式,并使用该知识生成与原始数据集相似但不相同的全新样本或数据。

在这里插入图片描述

例如,在人类或者猫狗的图像数据集上训练的生成式人工智能算法可以生成全新的人类图像或者猫和狗的图像,这些图像看起来与原始数据集中的图像相似,但不是精确的复制品。因此,"生成 "一词被用来描述它。

生成式人工智能(Generative AI)的涌现标志着人工智能技术的重大进步。

1.1 有监督学习的局限性与挑战

在2010年左右,随着大规模有监督学习逐渐成为主流,人们开始寄希望于大数据能够为AI模型的性能带来质的飞跃。

然而,从那时起,AI 科学家们开始观察到一个令人困扰的问题:尽管我们有大量的数据可供使用,但即使我们向小型AI模型继续提供更多的数据,它们的性能改善并不明显。例如,在构建语音识别系统时,尽管AI接受了数千乃至数十万小时的训练数据,但其准确性与仅使用少量数据的系统相比并无显著提高。这一现象引发了人们对监督学习有效性的怀疑。

监督学习的基本流程

进一步的研究表明,仅靠大规模监督学习和大数据集并不能无限地提升 AI 模型的准确性。

这是因为:

  • 首先,大规模数据集可能存在着标签噪声或错误,导致模型学习到了不准确的模式。

  • 此外,数据可能存在偏差,导致模型在面对新颖数据时表现不佳。

  • 其次,随着数据量的增加,模型的容量可能变得不足以有效地利用数据。即使有更多的数据可用,模型也可能因其结构或参数的限制而无法充分利用这些信息。

  • 再次,大规模监督学习通常依赖于端到端的训练方法,其中模型直接从输入到输出进行训练。这种方法可能会导致模型在理解数据背后的真实机制方面缺乏深入的抽象能力,从而限制了其性能。

1.2 生成式人工智能的出现

随着人们对监督学习的限制和挑战有了更深入的认识,研究人员开始寻求其他方法来克服这些问题。
在这个过程中,生成式人工智能(Generative Artificial Intelligence)应运而生,并逐渐成为人工智能领域的重要组成部分。

生成式人工智能(AIGC)与传统的机器学习算法不同,它不仅仅局限于对已有数据的分类或预测,而是可以通过学习数据的分布,创造出全新的、以前从未见过的内容,它能够像一座神奇的创意工厂一样,通过Prompt 提示词不断地生产出令人惊叹的全新数据、图像、音频和文本内容。

生成式人工智能与其他类型人工智能之间的另一个关键区别是,生成式人工智能模型通常使用无监督和半监督机器学习算法。

无监督学习的基本流程

这意味着它们不需要对学习的数据进行预先标记,这使得生成式人工智能在结构化或组织数据稀缺或难以获取的应用中特别有用。

  • 这些生成式人工智能系统通常基于深度学习模型构建,这些模型能够从大量的训练数据中学习数据的统计结构和语义信息。

  • 其次,生成式模型具有更强的表达能力,能够捕捉数据中的复杂结构和分布。相比之下,传统的监督学习方法可能会受到数据标签的限制,无法完全表达数据的多样性和复杂性。

  • 此外,生成式人工智能还为解决监督学习中的标签噪声和数据偏差问题提供了新的途径。通过学习数据的潜在表示,生成式模型可以更好地理解数据背后的真实机制,从而提高模型对噪声和偏差的鲁棒性。

生成式人工智能的出现为人工智能领域带来了新的思路和解决方案,克服了传统监督学习方法的一些限制和挑战。通过结合生成式方法和传统的监督学习技术,我们可以更好地利用数据,提高模型的性能和泛化能力。

二、生成式人工智能的思想

2.1 生成式人工智能的基本工作原理:

生成式人工智能的基本工作原理是通过学习数据的分布特征,从而能够生成与原始数据相似的新数据。其核心思想是从训练数据中学习数据的概率分布,并使用学习到的分布模型来生成新的数据样本。

生成式人工智能通常采用生成对抗网络(GANs)或变分自编码器(VAEs)、Transformer 等模型来实现。

就拿生成对抗网络(GANs)来说,GANs 模型包括两个主要组成部分:

生成对抗网络(GANs)

1. 生成器(Generator): 生成器是一个神经网络模型,用来接收一个随机噪声向量或其他形式的输入,并将其映射到数据空间。生成器的目标是通过根据用户输入的分析数据模式来创建新数据。通过不断调整生成器的参数,使得生成的样本尽可能地接近真实场景中的数据分布。

2. 判别器(Discriminator): 判别器也是一个神经网络模型,其任务是对生成器生成的样本与真实数据进行区分,估计样本来自于训练数据的概率。它接收来自生成器产生的样本和真实数据的输入,并尝试将它们分类为真实或伪造。判别器的目标是最大化正确地将真实数据分类为真实样本,同时将生成的样本正确分类为伪造样本。

每当有用户输入时,生成器就会生成新的数据,判别器将分析它的真实性。来自判别器的反馈使算法能够调整生成器参数并不断地重新调整和细化输出。

在数学上可以证明,在任意函数的生成器(G)和判别器(D)空间中,存在唯一的解决方案,使得生成器(Generator)生成的内容可以重现真实训练数据的分布,也就是当判别器 D=0.5 时,生成器 G 产生的信息与输入的信息达到平衡。

生成对抗网络的工作过程

通过训练生成器和判别器的对抗过程,生成式人工智能模型不断地提高生成样本的质量,使得生成的样本更加逼真,并且与真实数据的分布更加接近。这种对抗性训练的过程使得生成器和判别器之间达到一种平衡,最终这个过程一直持续到生成器产生与输入信息无法区分的数据为止。

2.2 生成式人工智能的工作过程

生成式人工智能的工作过程通常如下:

生成式AI的工作过程

  1. 学习数据分布:生成式模型首先通过大量的训练数据学习输入数据的分布。这些数据可以是图像、文本、音频等形式。模型通过学习数据的特征和统计分布来理解输入数据的内在规律。

  2. 生成新数据:一旦生成式模型学习到了数据的分布,它就可以通过随机采样或输入特定的条件来生成新的数据。生成的数据可能具有与训练数据相似的统计特性和结构,但通常是全新的、之前未见过的数据。

  3. 优化过程:生成式模型的训练通常涉及到一个优化过程,通过最小化生成数据与真实数据之间的差异来调整模型参数。对抗性生成网络(GANs)中使用了对抗训练的思想,包括生成器和判别器两个部分,它们相互竞争并共同提高模型的性能。

  4. 控制生成过程:一些生成式模型允许用户在生成新数据时提供一些条件或控制参数,以影响生成结果。例如,在生成图像时可以指定生成的图像类别或风格,或者在生成文本时可以指定生成的主题或情感。

  5. 评估生成结果:生成式模型通常需要经过一定的评估和调优来确保生成的数据质量和多样性。这可能涉及到定量指标如生成数据的多样性、真实度等,以及定性评估如人工评价生成数据的质量和逼真度。然后通过一个称为 "推理 "的过程来完善输出。在推理过程中,模型会调整其输出,以更好地匹配所需的输出或纠正任何错误。这样就能确保生成的输出更加逼真,更符合用户希望看到的效果。

三、如何评估生成式人工智能模型

选择正确的模型对于某些特定的任务至关重要,因为每个任务都有其独特的需求和目标,而不同的生成式人工智能模型也各有其优缺点。比如,某一些模型可能比较擅长生成高质量的图像内容,而另一些模型则更擅长生成顺畅连贯的文本内容。

因此在选择时,需要重视对生成模型进行评估以确定最适合特定任务的模型。这种评估不仅有助于选择正确的模型,还有助于确定需要改进的方面。通过这种方式,可以完善模型并增加实现预期结果的可能性,从而提高人工智能系统的整体成功率。

在评估模型时,通常需要考虑三个关键要素:

评估模型的三要素

  1. Quality 质量:生成式模型的输出质量至关重要,尤其是在直接与用户交互的应用程序中。例如,在文本生成模型中,前言不搭后语的文本可能会让人感觉一团糟,在语音生成模型中,低质量的语音可能会让人听不懂;而在图像生成模型中,生成的图像最好是能够做到浑然天成,和真实的图像无法区分。

  2. Diversity 多样性:优秀的生成式模型应该能够捕获数据分布中的各种模式,而不会降低生成的质量。这种多样性有助于减少模型中不必要的偏差。

  3. Speed 速度:许多交互式应用程序需要快速生成结果,例如实时图像编辑,以支持内容创建的工作流程。因此,在评估生成模型时,生成的速度也是一个重要的考量因素。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/383058.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

私有化部署一个自己的网盘

效果 安装 1.创建目录 cd /opt mkdir -p kod/{db,site} cd /opt/kod 2.环境文件 vim db.env 内容如下 MYSQL_PASSWORD123456 MYSQL_DATABASEkodbox MYSQL_USERkodbox 3.编写docker-compose.yml vim docker-compose.yml 内容如下 version: 3.5services:db:image: mar…

探索数据可视化:Matplotlib在Python中的高效应用

探索数据可视化:Matplotlib在Python中的高效应用 引言Matplotlib基础安装和配置Matplotlib基础概念绘制简单图表线形图散点图柱状图 图表定制和美化修改颜色、线型和标记添加标题、图例和标签使用样式表和自定义样式 高级图表类型绘制高级图表多图布局和复杂布局交互…

聚观早报 | iOS 17.4正式版将上线;魅族21 Pro或下月发布

聚观早报每日整理最值得关注的行业重点事件,帮助大家及时了解最新行业动态,每日读报,就读聚观365资讯简报。 整理丨Cutie 2月5日消息 iOS 17.4正式版将上线 魅族21 Pro或下月发布 小米MIX Flip细节曝光 OPPO Find X7 Ultra卫星通信版 …

【java】12:封装

面向对象编程三大特征 1.基本介绍 面向对象编程有三大特征:封装、继承和多态。 2.封装介绍 封装(encapsulation)就是把抽象出的数据[属性]和对数据的操作[方法]封装在一起,数据被保护在内部,程序的其它部分只有通过被授权的操作[方法]&am…

Java中处理I/O操作的不同方式:BIO,NIO,AIO

Java中处理I/O操作的不同方式:BIO,NIO,AIO 亲爱的朋友, 在这美好的时刻,愿你感受到生活的温暖和欢乐。愿你的每一天都充满着笑容和满足,无论面对什么挑战都能勇往直前,化解困境。 希望你的心中充…

ubuntu22.04 安装部署04:经常死机,鼠标,键盘无响应

相关文章: ubuntu22.04 安装部署01:禁用内核更新 ubuntu22.04安装部署02:禁用显卡更新 ubuntu22.04安装部署03: 设置root密码 一、现象说明 1. 开机一小时后,突然之间网络掉线,鼠标、键盘无反应。 2.…

Makefile编译原理 make 中的路径搜索_2

一.make中的路径搜索 VPATH变量和vpath关键字同时指定搜索路径。 实验1 VPATH 和 vpath 同时指定搜索路径 mhrubuntu:~/work/makefile1/18$ tree . ├── inc │ └── func.h ├── main.c ├── makefile ├── src1 │ └── func.c └── src2 └── func.c mak…

面向对象编程:理解其核心概念与应用

引言 在编程的世界中,面向对象编程(Object-Oriented Programming, OOP)已成为一种主流的编程范式。它提供了一种组织和管理代码的有效方式,使得代码更加模块化、可重用和易于维护。本文将带您深入探讨面向对象编程的核心概念及其…

mysql、mybatis中SORT

SORT排序 根据数据表sys_series中HOT(int类型)进行升序排列: 原来的数据库中存储: 排序# 结果是HOT字段为null的所有数据都排在最前面,不为null的数据按升序排列 SELECT * FROM sys_series ORDER BY HOT;# 结果是HOT字段为null的所有数据都排在最后面,不为null的数据按数…

测试编码规范

0.测试代码和业务代码要分离 把测试代码和业务代码放进各自的所属的"盒子"中,互不干扰 Q:为什么要分离? 分门别类,避免混乱,方便维护 不在试卷上打草稿而是专门准备草稿纸 没人会在客厅做饭吧,不然要厨房干什么 Q:如…

uv机器电机方向极性

爱普生主板设置X、Y 电机方向极性:请根据实际情况设置,开机初始化时如果电机运动方向反了则修改此极性。 理光主板设置X、Y 电机方向极性

Netty应用(七) 之 Handler Netty服务端编程总结

目录 15.Handler 15.1 handler的分类 15.1.1 按照方向划分 15.1.2 handler的结构 15.2 输入方向ChannelInboundHandlerAdapter 15.2.1 输出方向Handler的顺序 15.2.2 多个输入方向Handler之间的数据传递 15.2.2.1 handler消失了 15.2.2.2 手动编写netty提供的new Strin…

第66讲管理员登录功能实现

项目样式初始化 放assets目录下; border.css charset "utf-8"; .border, .border-top, .border-right, .border-bottom, .border-left, .border-topbottom, .border-rightleft, .border-topleft, .border-rightbottom, .border-topright, .border-botto…

Day39- 动态规划part07

一、爬楼梯 题目一&#xff1a;57. 爬楼梯 57. 爬楼梯&#xff08;第八期模拟笔试&#xff09; 题目描述 假设你正在爬楼梯。需要 n 阶你才能到达楼顶。 每次你可以爬至多m (1 < m < n)个台阶。你有多少种不同的方法可以爬到楼顶呢&#xff1f; 注意&#xff1a;…

2024给你一些Android 应用性能优化的建议

2024给你一些Android 应用性能优化的建议 在当今激烈竞争的移动应用市场中&#xff0c;用户对应用性能和体验的要求越来越高。因此&#xff0c;进行 Android 应用性能优化是开发过程中必不可少的一环。下面将详细介绍如何提升应用的性能&#xff0c;以提升用户体验。 1. 优化…

LSF 主机状态 unreach 分析

在LSF集群运行过程中&#xff0c;有主机状态变为 unreach。熟悉LSF的朋友都知道主机状态为 unreach 表示主机上的 SBD 服务中断服务了&#xff0c;但其它服务 LIM 和 RES 还在正常运行。 影响分析 那么主机上的 SBD 服务中断的影响是什么呢&#xff1f; 我们需要先明白 SBD …

Swift Combine 使用 sink, assign 创建一个订阅者 从入门到精通九

Combine 系列 Swift Combine 从入门到精通一Swift Combine 发布者订阅者操作者 从入门到精通二Swift Combine 管道 从入门到精通三Swift Combine 发布者publisher的生命周期 从入门到精通四Swift Combine 操作符operations和Subjects发布者的生命周期 从入门到精通五Swift Com…

算法学习——LeetCode力扣二叉树篇2

算法学习——LeetCode力扣二叉树篇2 107. 二叉树的层序遍历 II 107. 二叉树的层序遍历 II - 力扣&#xff08;LeetCode&#xff09; 描述 给你二叉树的根节点 root &#xff0c;返回其节点值 自底向上的层序遍历 。 &#xff08;即按从叶子节点所在层到根节点所在的层&#…

nginx简单配置四种携带/时的拼接关系

一、代理静态文件 1、 当 location 尾部有 /&#xff0c;且代理地址尾部也有 / 时&#xff1a;&#xff08;常用&#xff09; location /test11/ {root /usr/local/nginx/html/; } 则访问 http://ip/test11/aaa&#xff0c;实际访问的是/usr/local/nginx/html/aaa2、 当…

CSS Selector—选择方法,和html自动——异步社区的爬取(动态网页)——爬虫(get和post的区别)

这里先说一下GET请求和POST请求&#xff1a; post我们平时是要加data的也就是信息&#xff0c;你会发现我们平时百度之类的 搜索都是post请求 get我们带的是params&#xff0c;是发送我们指定的内容。 要注意是get和post请求&#xff01;&#xff01;&#xff01; 先说一下异…