常用排序算法(Java版本)

1 引言

常见的排序算法有八种:交换排序【冒泡排序、快速排序】、插入排序【直接插入排序、希尔排序】、选择排序【简单选择排序、堆排序】、归并排序、基数排序。

2 交换排序

所谓交换,就是序列中任意两个元素进行比较,根据比较结果来交换各自在序列中的位置,以此达到排序的目的。

2.1 冒泡排序

冒泡排序是一种简单的交换排序算法,以升序排序为例,其核心思想是:

  1. 从第一个元素开始,比较相邻的两个元素。如果第一个比第二个大,则进行交换。
  2. 轮到下一组相邻元素,执行同样的比较操作,再找下一组,直到没有相邻元素可比较为止,此时最后的元素应是最大的数。
  3. 除了每次排序得到的最后一个元素,对剩余元素重复以上步骤,直到没有任何一对元素需要比较为止。
	public void bubbleSortOpt(int[] nums) {
        if (nums == null) {
            return;
        }

        int temp;
        for (int i = 0; i < nums.length; i++) {
            for (int j = 0; j < nums.length - 1 - i; j++) {
                if (nums[j] > nums[j + 1]) {
                    temp = nums[j];
                    nums[j] = nums[j + 1];
                    nums[j + 1] = temp;
                }
            }
        }
    }

2.2 快速排序

快速排序的思想很简单,就是先把待排序的数组拆成左右两个区间,左边都比中间的基准数小,右边都比基准数大。接着左右两边各自再做同样的操作,完成后再拆分再继续,一直到各区间只有一个数为止。

举个例子,现在我要排序 4、9、5、1、2、6 这个数组。一般取首位的 4 为基准数,第一次排序的结果是:

2、1、4、5、9、6

可能有人觉得奇怪,2 和 1 交换下位置也能满足条件,为什么 2 在首位?这其实由实际的代码实现来决定,并不影响之后的操作。以 4 为分界点,对 2、1、4 和 5、9、6 各自排序,得到:

1、2、4、5、9、6

不用管左边的 1、2、4 了,将 5、9、6 拆成 5 和 9、6,再排序,至此结果为:

1、2、4、5、6、9

为什么把快排划到交换排序的范畴呢?因为元素的移动也是靠交换位置来实现的。算法的实现需要用到递归(拆分区间之后再对每个区间作同样的操作)

    public void quicksort(int[] arr, int start, int end) {
        if (start < end) {
            int stard = arr[start];
            int low = start;
            int high = end;
            while (low < high) {


                while (low < high && stard <= arr[high]) {
                    high--;
                }
                arr[low] = arr[high];

                while (low < high && stard >= arr[low]) {
                    low++;
                }
                arr[high] = arr[low];
            }

            arr[low] = stard;
            quicksort(arr, start, low);
            quicksort(arr, low + 1, end);
        }
    }

3 插入排序

插入排序是一种简单的排序方法,其基本思想是将一个记录插入到已经排好序的有序表中,使得被插入数的序列同样是有序的。按照此法对所有元素进行插入,直到整个序列排为有序的过程。

3.1 直接插入排序

直接插入排序就是插入排序的粗暴实现。对于一个序列,选定一个下标,认为在这个下标之前的元素都是有序的。将下标所在的元素插入到其之前的序列中。接着再选取这个下标的后一个元素,继续重复操作。直到最后一个元素完成插入为止。我们一般从序列的第二个元素开始操作。
在这里插入图片描述

    public void insertSort(int[] nums) {
    	// 遍历所有数字
        for (int i = 1; i < nums.length; i++) {
            if (nums[i] < nums[i - 1]) {
            	// 把当前遍历的数字保存一下
                int temp = nums[i];
                int j;
                // 前一个数字按序移动到后一个数字上
                for (j = i - 1; j >= 0 && nums[j] >= temp; j--) {
                    nums[j + 1] = nums[j];
                }
                nums[j + 1] = temp;
            }
        }
    }

3.2 希尔排序

某些情况下直接插入排序的效率极低。比如一个已经有序的升序数组,这时再插入一个比最小值还要小的数,也就意味着被插入的数要和数组所有元素比较一次。我们需要对直接插入排序进行改进。

怎么改进呢?前面提过,插入排序对已经排好序的数组操作时,效率很高。因此我们可以试着先将数组变为一个相对有序的数组,然后再做插入排序。

希尔排序能实现这个目的。希尔排序把序列按下标的一定增量(步长)分组,对每组分别使用插入排序。随着增量(步长)减少,一直到一,算法结束,整个序列变为有序。因此希尔排序又称缩小增量排序。

一般来说,初次取序列的一半为增量,以后每次减半,直到增量为一。
在这里插入图片描述

    public void shellSort(int[] nums) {
        for (int gap = nums.length / 2; gap > 0; gap /= 2) {
            for (int i = 0; i < gap; i++) {
                for (int j = i + gap; j < nums.length; j += gap) {
                    if (nums[j] < nums[j - gap]) {
                        int k;
                        int temp = nums[j];
                        for (k = j - gap; k >= 0 && nums[k] > temp; k -= gap) {
                            nums[k + gap] = nums[k];
                        }
                        nums[k + gap] = temp;
                    }
                }
            }
        }
    }

4 选择排序

选择排序是一种简单直观的排序算法,首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。

4.1 简单选择排序

选择排序思想的暴力实现,每一趟从未排序的区间找到一个最小元素,并放到第一位,直到全部区间有序为止。

    public void selectSort(int[] nums) {
        for (int i = 0; i < nums.length; i++) {
            int minIndex = i;
            for (int j = i + 1; j < nums.length; j++) {
                if (nums[j] < nums[minIndex]) {
                    minIndex = j;
                }
            }

            if (i != minIndex) {
                int temp = nums[i];
                nums[i] = nums[minIndex];
                nums[minIndex] = temp;
            }
        }
    }

4.2 堆排序

我们知道,对于任何一个数组都可以看成一颗完全二叉树。堆是具有以下性质的完全二叉树:每个结点的值都大于或等于其左右孩子结点的值,称为大顶堆;或者每个结点的值都小于或等于其左右孩子结点的值,称为小顶堆。如下图:
在这里插入图片描述
像上图的大顶堆,映射为数组,就是 [50, 45, 40, 20, 25, 35, 30, 10, 15]。可以发现第一个下标的元素就是最大值,将其与末尾元素交换,则末尾元素就是最大值。所以堆排序的思想可以归纳为以下两步:

根据初始数组构造堆

每次交换第一个和最后一个元素,然后将除最后一个元素以外的其他元素重新调整为大顶堆

重复以上两个步骤,直到没有元素可操作,就完成排序了。

我们需要把一个普通数组转换为大顶堆,调整的起始点是最后一个非叶子结点,然后从左至右,从下至上,继续调整其他非叶子结点,直到根结点为止。

/**
 * 转化为大顶堆
 * @param arr 待转化的数组
 * @param size 待调整的区间长度
 * @param index 结点下标
 */
public void maxHeap(int[] arr, int size, int index) {
    // 左子结点
    int leftNode = 2 * index + 1;
    // 右子结点
    int rightNode = 2 * index + 2;
    int max = index;
    // 和两个子结点分别对比,找出最大的结点
    if (leftNode < size && arr[leftNode] > arr[max]) {
        max = leftNode;
    }
    if (rightNode < size && arr[rightNode] > arr[max]) {
        max = rightNode;
    }
    // 交换位置
    if (max != index) {
        int temp = arr[index];
        arr[index] = arr[max];
        arr[max] = temp;
        // 因为交换位置后有可能使子树不满足大顶堆条件,所以要对子树进行调整
        maxHeap(arr, size, max);
    }
}

/**
 * 堆排序
 * @param arr 待排序的整型数组
 */
public static void heapSort(int[] arr) {
    // 开始位置是最后一个非叶子结点,即最后一个结点的父结点
    int start = (arr.length - 1) / 2;
    // 调整为大顶堆
    for (int i = start; i >= 0; i--) {
        SortTools.maxHeap(arr, arr.length, i);
    }
    // 先把数组中第 0 个位置的数和堆中最后一个数交换位置,再把前面的处理为大顶堆
    for (int i = arr.length - 1; i > 0; i--) {
        int temp = arr[0];
        arr[0] = arr[i];
        arr[i] = temp;
        maxHeap(arr, i, 0);
    }
}

5 归并排序

归并排序是建立在归并操作上的一种有效,稳定的排序算法。该算法采用分治法的思想,是一个非常典型的应用。归并排序的思路如下:

  1. 将 n 个元素分成两个各含 n/2 个元素的子序列
  2. 借助递归,两个子序列分别继续进行第一步操作,直到不可再分为止
  3. 此时每一层递归都有两个子序列,再将其合并,作为一个有序的子序列返回上一层,再继续合并,全部完成之后得到的就是一个有序的序列

关键在于两个子序列应该如何合并。假设两个子序列各自都是有序的,那么合并步骤就是:

  1. 创建一个用于存放结果的临时数组,其长度是两个子序列合并后的长度
  2. 设定两个指针,最初位置分别为两个已经排序序列的起始位置
  3. 比较两个指针所指向的元素,选择相对小的元素放入临时数组,并移动指针到下一位置
  4. 重复步骤 3 直到某一指针达到序列尾
  5. 将另一序列剩下的所有元素直接复制到合并序列尾
/**
 * 合并数组
 */
public static void merge(int[] arr, int low, int middle, int high) {
    // 用于存储归并后的临时数组
    int[] temp = new int[high - low + 1];
    // 记录第一个数组中需要遍历的下标
    int i = low;
    // 记录第二个数组中需要遍历的下标
    int j = middle + 1;
    // 记录在临时数组中存放的下标
    int index = 0;
    // 遍历两个数组,取出小的数字,放入临时数组中
    while (i <= middle && j <= high) {
        // 第一个数组的数据更小
        if (arr[i] <= arr[j]) {
            // 把更小的数据放入临时数组中
            temp[index] = arr[i];
            // 下标向后移动一位
            i++;
        } else {
            temp[index] = arr[j];
            j++;
        }
        index++;
    }
    // 处理剩余未比较的数据
    while (i <= middle) {
        temp[index] = arr[i];
        i++;
        index++;
    }
    while (j <= high) {
        temp[index] = arr[j];
        j++;
        index++;
    }
    // 把临时数组中的数据重新放入原数组
    for (int k = 0; k < temp.length; k++) {
        arr[k + low] = temp[k];
    }
}

/**
 * 归并排序
 */
public static void mergeSort(int[] arr, int low, int high) {
    int middle = (high + low) / 2;
    if (low < high) {
        // 处理左边数组
        mergeSort(arr, low, middle);
        // 处理右边数组
        mergeSort(arr, middle + 1, high);
        // 归并
        merge(arr, low, middle, high);
    }
}

6 基数排序

基数排序的原理是将整数按位数切割成不同的数字,然后按每个位数分别比较。为此需要将所有待比较的数值统一为同样的数位长度,数位不足的数在高位补零。

/**
 * 基数排序
 */
public static void radixSort(int[] arr) {
    // 存放数组中的最大数字
    int max = Integer.MIN_VALUE;
    for (int value : arr) {
        if (value > max) {
            max = value;
        }
    }
    // 计算最大数字是几位数
    int maxLength = (max + "").length();
    // 用于临时存储数据
    int[][] temp = new int[10][arr.length];
    // 用于记录在 temp 中相应的下标存放数字的数量
    int[] counts = new int[10];
    // 根据最大长度的数决定比较次数
    for (int i = 0, n = 1; i < maxLength; i++, n *= 10) {
        // 每一个数字分别计算余数
        for (int j = 0; j < arr.length; j++) {
            // 计算余数
            int remainder = arr[j] / n % 10;
            // 把当前遍历的数据放到指定的数组中
            temp[remainder][counts[remainder]] = arr[j];
            // 记录数量
            counts[remainder]++;
        }
        // 记录取的元素需要放的位置
        int index = 0;
        // 把数字取出来
        for (int k = 0; k < counts.length; k++) {
            // 记录数量的数组中当前余数记录的数量不为 0
            if (counts[k] != 0) {
                // 循环取出元素
                for (int l = 0; l < counts[k]; l++) {
                    arr[index] = temp[k][l];
                    // 记录下一个位置
                    index++;
                }
                // 把数量置空
                counts[k] = 0;
            }
        }
    }
}

7 算法性能

序号排序算法时间复杂度(平均)时间复杂度(最坏)时间复杂度(最好)空间复杂度稳定性
1冒泡排序O(n^2)O(n^2)O(n)O(1)稳定
2快速排序O(n log n)O(n^2)O(n log n)O(n log n)不稳定
3直接插入排序O(n^2)O(n^2)O(n)O(1)稳定
4希尔排序O(n log n)O(n^2)O(n)O(1)不稳定
5简单选择排序O(n^2)O(n^2)O(n^2)O(1)不稳定
6堆排序O(n log n)O(n log n)O(n log n)O(n log n)不稳定
7归并排序O(n log n)O(n log n)O(n log n)O(n)稳定
8基数排序O(n*k)O(n*k)O(n*k)O(n+k)稳定

返回面试宝典

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/378963.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

编曲入门软件哪个好 编曲入门教程 Studio One哪个版本好 Studio One6.5正版多少钱 FL Studio下载

新手编曲软件推荐&#xff1f;新手学编曲要先熟悉编曲逻辑&#xff0c;因此需要选择编曲逻辑简明易懂的宿主软件。编曲新手应该做哪些准备&#xff1f;准备好编曲设备、宿主软件、基础乐理学习资料。 一、编曲入门软件哪个好 新手入门阶段还没有形成系统的编曲思维&#xff0…

用的到的linux-查找find-Day4

前言&#xff1a; 在上一节&#xff0c;我们了解到rm删除命令&#xff0c;一共拥有三种模式&#xff0c;即-i默认只能删除文件且会提示确认&#xff0c;其次是-r 遍历删除&#xff0c;用于删除目录及目录下的文件&#xff0c;同样需确认后才会删除&#xff0c;最后为-f为强制删…

Flink Checkpoint过程

Checkpoint 使用了 Chandy-Lamport 算法 流程 1. 正常流式处理&#xff08;尚未Checkpoint&#xff09; 如下图&#xff0c;Topic 有两个分区&#xff0c;并行度也为 2&#xff0c;根据奇偶数 我们假设任务从 Kafka 的某个 Topic 中读取数据&#xff0c;该Topic 有 2 个 Pa…

Stable Diffusion 模型下载:GhostMix(幽灵混合)

文章目录 模型介绍生成案例案例一案例二案例三案例四案例五案例六案例七案例八案例九案例十 下载地址 模型介绍 GhostMix 是绝对让你惊艳的模型&#xff0c;也是自己认为现在最强的2.5D模型。我认为模型的更新应该是基于现有的画面整体不大变的前提下&#xff0c;提高模型的成…

win32编程系统BUG(Win32 API中的WM_SETTEXT消息)

由于频繁使用Win32 API中的WM_SETTEXT消息&#xff0c;导致内存占用直线上升。 暂未找到有效解决方案。

【C++】中的 inline 用法

1、引入 inline 关键字的原因 在 c/c 中&#xff0c;为了解决一些频繁调用的小函数大量消耗栈空间&#xff08;栈内存&#xff09;的问题&#xff0c;特别的引入了 inline 修饰符&#xff0c;表示为内联函数。 栈空间就是指放置程序的局部数据&#xff08;也就是函数内数据&a…

c入门第十篇——指针入门

一句话来说: 指针就是存储了内存地址值的变量。 在前面讨论传值和传址的时候&#xff0c;我们就已经开始使用了指针来传递地址。 在正式介绍指针之前&#xff0c;我们先来简单了解一下内存。内存可以简单的理解为一排连续的房子的街道&#xff0c;每个房子都有自己的地址&#…

QGIS介绍

一.基本概念 QGIS的官方网站为&#xff1a;https://www.qgis.org Github地址&#xff1a;https://github.com/qgis/QGIS QGIS采用开源证书GNU GPLv2 (GNU General Public License version 2&#xff09;发布&#xff0c;主要采用C语言开发&#xff0c;用户界面依赖Qt平台。 二…

JMeter测试工具(性能篇)

自动化脚本 设置全局变量 断言 接口弱压力测试 模拟半小时之内1000个用户访问服务器资源&#xff0c;要求平均响应时间在3000ms内&#xff0c;且错误率为0 模拟100个用户同时访问服务器资源&#xff0c;要求平均响应时间在3000毫秒内&#xff0c;且错误率为0 高并发 模拟2个…

Kubernetes基础(十五)-k8s网络通信

1 k8s网络类型 2 Pod网络 2.1 同一pod内不同容器通信 Pod是Kubernetes中最小的可部署单元&#xff0c;它是一个或多个紧密关联的容器的组合&#xff0c;这些容器共享同一个网络命名空间和存储卷&#xff0c;因此Pod中的所有容器都共享相同的网络命名空间和IP地址——PodIP&a…

Web前端框架-Vue(初识)

文章目录 web前端三大主流框架**1.Angular****2.React****3.Vue**什么是Vue.js 为什么要学习流行框架框架和库和插件的区别一.简介指令v-cloakv-textv-htmlv-pre**v-once**v-onv-on事件函数中传入参数事件修饰符双向数据绑定v-model 按键修饰符自定义按键修饰符别名v-bind(属性…

寒假漫游记之CSS

一&#xff0c;CSS 1.CSS语法规范 CSS规则由两个主要的部分构成&#xff1a;选择器及一条或多条声明。 &#xff08;选择器是用于指定CSS样式的HTML标签&#xff09; 注&#xff1a;CSS是写在<style></style>里 (style在<head></head>),具体可以书写…

java面试题:MySQL中的各种JOIN的区别

表关联是频率非常高的一种数据库操作&#xff0c;在MySQL中&#xff0c;这种JOIN操作有很多类型&#xff0c;包括内联接、左外连接、右外连接等等&#xff0c;而每种连接的含义都不一样&#xff0c;如果死记硬背&#xff0c;不仅很难记住&#xff0c;而且也容易搞混淆&#xff…

Web课程学习笔记--JavaScript的性能优化-加载和执行

JavaScript 的性能优化&#xff1a;加载和执行 概述 无论当前 JavaScript 代码是内嵌还是在外链文件中&#xff0c;页面的下载和渲染都必须停下来等待脚本执行完成。JavaScript 执行过程耗时越久&#xff0c;浏览器等待响应用户输入的时间就越长。浏览器在下载和执行脚本时出…

幻兽帕鲁服务器部署与参数修改教程(WindowsLinux)

教程合集 【阿里云部署攻略】&#xff1a;【官方指南】阿里云搭建幻兽帕鲁服务器指南汇总 【腾讯云部署教程】&#xff1a;【官方指南】腾讯云搭建幻兽帕鲁服务器指南汇总 选服务器 阿里云新用户专享优惠&#xff1a;帕鲁官方推荐配置4核16G 以及 8核32G&#xff0c;新用户…

Optimism Collective 为 Covalent Network(CQT)提供价值 20 万美元的生态系统资助

Covalent Network&#xff08;CQT&#xff09; 是 Web3 生态系统中关键的“数据可用性”层&#xff0c;在与 Optimism Collective 多年的合作中取得了骄人的成果。Covalent Network&#xff08;CQT&#xff09;对于 Optimism 跨链数据的增长产生了直接的影响&#xff0c;而这一…

OJ刷题:求俩个数组的交集(没学哈希表?快排双指针轻松搞定!)

目录 ​编辑 1.题目描述 2.C语言中的内置排序函数&#xff08;qsort&#xff09; 3.解题思路 3.1 升序 3.2双指针的移动 3.3 保证加入元素的唯一性 4.leetcode上的完整代码 完结散花 悟已往之不谏&#xff0c;知来者犹可追 …

3.2 Verilog 时延

关键词&#xff1a;时延&#xff0c; 惯性时延 连续赋值延时语句中的延时&#xff0c;用于控制任意操作数发生变化到语句左端赋予新值之间的时间延时。 时延一般是不可综合的。 寄存器的时延也是可以控制的&#xff0c;这部分在时序控制里加以说明。 连续赋值时延一般可分为…

1898_野火FreeRTOS教程阅读笔记_链表操作

1898_野火FreeRTOS教程阅读笔记_链表操作 全部学习汇总&#xff1a; g_FreeRTOS: FreeRTOS学习笔记 (gitee.com) 新的节点的插入&#xff0c;影响到的是链表中最后一个元素的后继以及当前被插入元素的前驱、后继以及归属属性。具体的操作效果为&#xff1a;新的节点更新自己的前…

深度学习中常用激活函数介绍

深度学习中常用激活函数介绍 在深度学习中&#xff0c;激活函数的作用主要是引入非线性特性&#xff0c;提高模型的表达能力。具体如下&#xff1a; 解决线性不可分问题&#xff1a;激活函数可以将输入特征的复杂度提升&#xff0c;使得神经网络能够处理非线性问题&#xff0c…