DFS——剪枝

dfs在每个点(状态)的情况比较多,但是节点比较少的时候很常用,我们将每个状态的情况延伸出去,可以画出一棵搜索树。dfs会搜到每一种情况,所以我们实际上可以按照任意顺序来判否。为了优化搜索我们可以在搜索的过程中提前判否,那么显然越早判否,需要搜的规模就越小。那么如何实现尽可能地提前判否呢,那么就涉及到搜索顺序和剪枝技巧了,常用的剪枝技巧如下:

1.优化搜索顺序

(一般情况下,优先搜索分支较少的节点)

2.排除等效冗余

(如果选择顺序对结果没有影响的话,那么我们需要尽可能的避免等效情况的搜索)

3.可行性剪枝

4.最优性剪枝

(在求解最优的问题的时候,如果当前的情况已经大于等于搜到的最优解了,那么可以直接      剪枝)

5.记忆化搜索

(多用于dp问题,将算出来的状态储存下来,如果在搜索的过程中发现一个点的状态已经确      定,那么直接返回即可,不需要再往下搜了)

165. 小猫爬山(活动 - AcWing)

思路:我们一点一点来分析,首先n小于等于18,那么就说明这道题可以通过搜索来解决,搜索的时间复杂度是质数级别的,所以如果n太大了,那么用搜索的话时间复杂度或者空间复杂度就有点高了。

那么搜索题我们就要先确定一个合适的搜索顺序,合适的搜索顺序的要求就是可以搜到所有的情况。我们可以发现,这里dfs的每一层是用来确定一只小猫的位置,那么就这一层中的情况就很容易得到,有几种情况,首先是放在之前已经分配的车中,这里可以通过遍历那些车来实现,或者是新开一辆车,这样就可以将所有的情况都考虑到。我们将搜索树画出来:

 那么暴力搜索的思路就理通顺了,现在我们来考虑剪枝的问题,我们对照上面几条规则,一条一条来看:

1.优化搜索顺序,对应到这道题就是先搜重的猫还是先搜轻的猫,显然先搜重的猫比较好,因为重的猫可以占掉更多的空间,让后面的情况少一些。

2.排除等效冗余,这题的我们一层确定一个猫,所以不存在等效冗余的问题,至于车,每次都要遍历已经确定的点,所以没什么分别。

3.可行剪枝,如果放入当前猫之后已经超过上限了,肯定不用再搜了,所以可行性剪枝可以用

4.最优性剪枝,这题需要求的就是最优的问题,所以可以使用最优化剪枝。

5.记忆化搜索,每只猫与其他猫之间没有直接的关系,所以用不上记忆化搜索。

那么优化就确定出来了。

#include<bits/stdc++.h>
using namespace std;
int n,m;
int w[30],sum[30];
int ans;
void dfs(int u,int k)//k表示当前用了几辆车
{
    if(k>=ans) return;//最优性剪枝
    if(u==n)//下标从0->n-1,所以u==n时所有的猫都分配好了
    {
        ans=k;
        return ;
    }
    for(int i=0;i<k;i++)//车的下标也是从0开始,k表示已经用了k辆车了
    {
        if(sum[i]+w[u]<=m)//可行性剪枝
        {
            sum[i] += w[u];
            dfs(u+1,k);
            sum[i] -= w[u];//恢复现场
        }
    }
    sum[k]=w[u];
    dfs(u+1,k+1);
    sum[k]=0;//恢复现场
}
int main()
{
    scanf("%d%d",&n,&m);
    for(int i=0;i<n;i++) scanf("%d",&w[i]);
    sort(w,w+n);
    reverse(w,w+n);
    ans=n;
    dfs(0,0);
    
    printf("%d",ans);
    return 0;
}

166. 数独(166. 数独 - AcWing题库)

思路:这题就是枚举每个空的位置可以填的数,然后当所有的空都填上数后,就输出结果。所以是一个可行性的搜索,而非最优化搜索。

现在的问题就在于如何快速获取每个位置填什么数,以及更新填完之后的状态。这里我们可以用一个二进制数来表示每行每列每个3*3的方格中的状态,比如,对于第i行,我们用row[i]表示一个二进制数,这个二进制数中如果某一位上是1,那么就说明这一位对应的数可以填进这一行,那么对于一个空格,我们只要将它的行列以及一个3*3的方格中的状态求&,那么就可以获得这个位置可以填哪些数,求&之后的结果是一个二进制数,所以我们要想得到每一位具体填什么还需要再处理一下。这里有一个处理的思路是,我们获取这个二进制数的lowbit,同时预处理出来所有的lowbit对应的数是哪一位。这样就可以很快获得这一位填什么数,然后所有问题解决就可以开始爆搜了。

但是我们还是要尽可能地优化:

1.优化搜索顺序,显然我们应该先搜索情况少的地方

2.排除等效冗余,这道题实际上不存在等效冗余,因为一个位置上的数填上后就改变了一个横竖以及3*3方格中的状态,所以两个数填的顺序不同,那么对应的状态是不等效的。

3.可行性剪枝,当一个位置搜不下去的时候及时返回false进行剪枝。

4.最优性剪枝,本题是求可行性问题,不存在最优化剪枝,所以不用考虑。

那么搜索和优化都考虑出来了,那么就可以开始写代码了。

#include<bits/stdc++.h>
using namespace std;
const int N=9,M=1<<N;
int row[N],col[N],cell[3][3];
char s[100];
int ones[M],mp[M];
void init()
{
    for(int i=0;i<N;i++) row[i]=col[i]=(1<<N)-1;
    for(int i=0;i<3;i++)
        for(int j=0;j<3;j++)
            cell[i][j]=(1<<N)-1;
}
void draw(int x,int y,int t,int sta)
{
    if(sta) s[x*N+y]='1'+t;
    else s[x*N+y]='.';
    
    int v=1<<t;
    if(!sta) v=-v;
    row[x] -= v;
    col[y] -= v;
    cell[x/3][y/3] -= v;
}

int get(int x,int y)
{
    return row[x] & col[y] & cell[x/3][y/3];
}
int lowbit(int x)
{
    return x&-x;
}
int dfs(int cnt)
{
    if(!cnt) return 1;
    
    int mi=10,x,y;
    for(int i=0;i<N;i++)
        for(int j=0;j<N;j++)
            if(s[i*N+j]=='.')
            {
                int sta=get(i,j);
                if(ones[sta]<mi)
                {
                    mi=ones[sta];
                    x=i,y=j;
                }
            }
            
    int state=get(x,y);
    for(int i=state;i;i-=lowbit(i))
    {
        int t=mp[lowbit(i)];
        draw(x,y,t,1);
        if(dfs(cnt-1)) return 1;
        draw(x,y,t,0);
    }
    return 0;
}
int main()
{
    for(int i=0;i<N;i++) mp[1<<i] = i;
    for(int i=0;i<1<<N;i++)
        for(int j=0;j<N;j++)
            ones[i]+=i>>j&1;
    
    while(cin>>s,s[0]!='e')
    {
        init();
        int cnt=0;
        for(int i=0,k=0;i<N;i++)
            for(int j=0;j<N;j++,k++)
                if(s[k]!='.')
                {
                    int t=s[k]-'1';
                    draw(i,j,t,1);
                }
                else cnt++;
        
        dfs(cnt);
        
        cout<<s<<endl;
    }
}

167. 木棒(167. 木棒 - AcWing题库)

                                                                                       

思路:这道题要找出可能的最小长度,很容易想到二分,但是拼好后的木棍实际没有单调性,不过最终的长度一定是总长的因数,所以我们可以从这个角度进行优化。

当我们枚举出一个木棒长度后,就可以通过dfs来检查是否可以实现。那么就是长度固定,然后往里面填木棍,那么就是类似小猫爬山题,不过小猫爬山题不用把车填满,这里需要把木棒填满。但是那题中先填大的再填小的思路就可以用,这里就是第二个优化,我们先讨论长度长的木棍。

然后我们再来看,这里还有一点,在小猫题中,每层可以确定一个小猫的位置,所以我们是在每层中枚举出所有已经讨论过的车,但是这里每根木棒都要填满,所以我们就不能以木棍作为讨论的中心,而是应该以木棒作为讨论的中心,对于木棍,讨论它是否能填入当前木棒,当一根木棒填满后再重开一根新的木棒。 一根木棒一根木棒填,因为这里需要将每根木棒填满。所以这里由引出一个优化,在木棒内部木棍的顺序无所谓,所以我们需要按照组合数的思路来填每根木棒。也就是如果当前不新开,那么就直接往后讨论,如果新开那么再从头开始看。这是第三个优化。

然后我们再来看,如果当前木棍可以加入当前木棒,但是往后搜,最终返回的结果是否的话,那么所有和当前木棍相同的木棍都不能填在这里,因为如果可以,那么这里填的一定可以变成我们判否的那个,这是第四个优化。

继续看,如果我们新开了一个,然后某个木棍放在它的第一位,但是往后搜判否了,那么木棒这个长度的情况就应该全部判否。可以这么来思考,如果对于这个木棒有一种合适的方案,那么当前这根木棍一定得放在后面某根木棒的中间位置,木棒内部的位置无所谓,那么就可以将这个木棍换到那根木棒的开头位置,然后又可以将那根木棒换到当前判否的这根木棒的位置,那么就矛盾了,所以如果一根木棒开头位置放一根木棍往后搜判否了,那么这个长度的情况就应该判否。这是第五个优化。

最后一个优化:如果在一个木棒的结尾填入一个木棍,然后往后搜判否了,那么这个长度就应该判否。因为很显然这里如果填满,肯定得填若干个长度和与这个木棍长度相等的木棍,那么就可以替换成这个木棍,又产生矛盾。所以如果这个木棍填在最后一个位置但是判否的话,这个木棒的长度就应该判否。

那么搜索和优化就都讨论结束了,可以来写代码了。

#include<bits/stdc++.h>
using namespace std;
int n,sum,len;
int a[70];
int st[70];
int dfs(int u,int k,int start)
{
    if(u*len == sum) return 1;
    if(k==len) return dfs(u+1,0,0);
    
    for(int i=start;i<n;i++)
    {
        if(st[i] || k+a[i]>len) continue;
        
        st[i]=1;
        if(dfs(u,k+a[i],i+1)) return true;
        st[i]=0;
 
        if(!k) return false;
            
        if(k+a[i]==len) return false;
            
        int j=i;
        while(j<n&&a[j]==a[i]) j++;
        i=j-1;
    }
    return false;
}
int main()
{
    while(cin>>n)
    {
        if(!n) break;
        memset(st,0,sizeof st);
        sum=0;
        for(int i=0;i<n;i++) scanf("%d",&a[i]),sum+=a[i];
        sort(a,a+n);
        reverse(a,a+n);
        len=1;
        while(1)
        {
            if(sum%len==0&&dfs(0,0,0))
            {
                cout<<len<<endl;
                break;
            }
            len++;
        }
    }
}

168. 生日蛋糕(168. 生日蛋糕 - AcWing题库)

思路:M比较小,那么暗示我们需要对于每一层来枚举r和h,肯定不能随便枚举,题目有一些限制条件,我们据此将每一层的r和h限定一下,缩小搜索范围。

为了使搜索分支尽可能的小,那么我们可以从底层往上搜,而且因为r对体积的贡献是平方级别的,我们先枚举r,再枚举h,不过我们还是将底层设为第m层,顶层设为第1层,那么对于每层来说:
i<=r[i]<r[i+1] ,对于左边界,我们是假设后面都严格递减,那么如果半径小于i的话,就不能保证顶层也是正整数了,对于右边界,就是为了符合递减的要求。但仅仅有这些还是不够的。我们假设已经讨论的部分的体积是v,那么剩余的体积应该是n-v,所以我们假设这个体积全部分到这一层,h为1,那么半径就是sqrt(n-v),这是另一个上限。故i<=r[i]<=min(r[i+1]-1,sqrt(n-v))
对于h也是一样的,i<=h[i]<=min(h[i+1]-1,(n-v)/r)

仅仅剪枝到这里还是不够的,我们假设当前已经填了体积为v的部分了,然后剩下的部分我们按照最小体积来计算(最小体积可以预处理出来),如果和已经超过n了,那么就不用讨论了,对于表面积也是一样,如果已经超过了ans,就不用再讨论了。

然后还有一个很关键但是很难想的优化,因为这里用到了放缩:

至此,搜索和优化都讨论好了,那么来写代码。

#include<bits/stdc++.h>
using namespace std;
int n,m;
int miv[30],mis[30];
int ans=1e9;
int r[30],h[30];
void dfs(int u,int v,int s)
{
    if(v+miv[u]>n) return;
    if(s+mis[u]>=ans) return;
    if(s+2*(n-v)/r[u+1]>=ans) return;
    if(!u) 
    {
        if(v==n) ans=s;
        return;
    }
    for(int i=min(r[u+1]-1,(int)sqrt(n-v));i>=u;i--)
    {
        for(int j=min(h[u+1]-1,(n-v)/i/i);j>=u;j--)
        {
            int t=0;
            if(u==m) t=i*i;
            h[u]=j,r[u]=i;
            dfs(u-1,v+i*i*j,s+2*i*j+t);
        }
    }
}
int main()
{
    scanf("%d%d",&n,&m);
    for(int i=1;i<=m;i++)
    {
        miv[i] = miv[i-1] + i*i*i;
        mis[i] = mis[i-1] + 2*i*i;
    }
    r[m+1]=h[m+1]=1e9;
    dfs(m,0,0);
    if(ans==1e9) cout<<0;
    else cout<<ans;
}

这一块儿反映出来的问题就是不熟练,思路和代码都不太熟练,所以继续练吧! 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/378025.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Leetcode刷题笔记题解(C++):64. 最小路径和

思路一&#xff1a;dfs深度优先搜索&#xff0c;然后取最小路径值&#xff0c;但是时间消耗较大&#xff0c;时间复杂度可能不满足&#xff0c;代码如下&#xff1a; class Solution { public:int res 1000000;int rows,cols;int minPathSum(vector<vector<int>>…

C#中的浅度和深度复制(C#如何复制一个对象)

文章目录 浅度和深度复制浅度复制深度复制如何选择 浅度和深度复制 在C#中&#xff0c;浅度复制&#xff08;Shallow Copy&#xff09;和深度复制&#xff08;Deep Copy&#xff09;是两种不同的对象复制方式&#xff0c;满足不同的应用场景需求&#xff0c;它们主要区别在于处…

Vivado Tri-MAC IP的例化配置(三速以太网IP)

目录 1 Tri-MAC IP使用RGMII接口的例化配置1.1 Data Rate1.2 interface配置1.3 Shared Logic配置1.4 Features 2 配置完成IP例化视图 1 Tri-MAC IP使用RGMII接口的例化配置 在网络设计中&#xff0c;使用的IP核一般为三速以太网IP核&#xff0c;使用时在大多数场景下为配置为三…

IS-IS 接口认证密码平滑更换

拓扑图 配置 AR1、AR2建立ISIS level-2邻居关系&#xff0c;并配置接口认证密码为huawei sysname AR1 # isis 1is-level level-2network-entity 49.0000.0000.0000.0001.00 # interface GigabitEthernet0/0/0ip address 12.1.1.1 255.255.255.0 isis enable 1isis authentica…

一文学会Axios的使用

异步请求 同步发送请求过程如下 浏览器页面在发送请求给服务器&#xff0c;在服务器处理请求的过程中&#xff0c;浏览器页面不能做其他的操作。只能等到服务器响应结束后才能&#xff0c;浏览器页面才能继续做其他的操作。 异步发送请求过程如下浏览器页面发送请求给服务器&…

百卓Smart管理平台 uploadfile.php 文件上传漏洞【CVE-2024-0939】

百卓Smart管理平台 uploadfile.php 文件上传漏洞【CVE-2024-0939】 一、 产品简介二、 漏洞概述三、 影响范围四、 复现环境五、 漏洞复现手动复现小龙验证Goby验证 免责声明&#xff1a;请勿利用文章内的相关技术从事非法测试&#xff0c;由于传播、利用此文所提供的信息或者工…

基于YOLOv8的暗光低光环境下(ExDark数据集)检测,加入多种优化方式---自研CPMS注意力,效果优于CBAM ,助力自动驾驶(二)

&#x1f4a1;&#x1f4a1;&#x1f4a1;本文主要内容:详细介绍了暗光低光数据集检测整个过程&#xff0c;从数据集到训练模型到结果可视化分析&#xff0c;以及如何优化提升检测性能。 &#x1f4a1;&#x1f4a1;&#x1f4a1;加入 自研CPMS注意力 mAP0.5由原始的0.682提升…

二十多篇文献带你读懂分布式学习与联邦学习优化思路 调度优化 压缩算法 聚合算法

前言 文中增加了引用跳转&#xff0c;如果想要细度哪一篇文章&#xff0c;只需通过引用跳转到结尾的Reference便可以获得文章的标题&#xff0c;通过Google Scholar搜索便可以获取原文。 本文为作者原创&#xff0c;转载请注明作者kaiserqzyue。 摘要 联邦学习的提出是为了…

前端ajax技术

ajax可以实现局部刷新&#xff0c;也叫做无刷新&#xff0c;无刷新指的是整个页面不刷新&#xff0c;只是局部刷新&#xff0c;ajax可以自己发送http请求&#xff0c;不用通过浏览器的地址栏&#xff0c;所以页面整体不会刷新&#xff0c;ajax获取到后台数据&#xff0c;更新页…

【51单片机】静态数码管显示(设计思路&原理&代码演示)

前言 大家好吖&#xff0c;欢迎来到 YY 滴单片机系列 &#xff0c;热烈欢迎&#xff01; 本章主要内容面向接触过单片机的老铁 主要内容含&#xff1a; 本章节内容为【实现动静态数码管】项目的第二个模块完整章节&#xff1a;传送门 欢迎订阅 YY滴C专栏&#xff01;更多干货持…

L3HCTF 2024

Check in 输入一个1就获得flag

最大子数组和[中等]

一、题目 给定一个长度为n的环形整数数组nums&#xff0c;返回nums的非空 子数组 的最大可能和 。 环形数组 意味着数组的末端将会与开头相连呈环状。形式上&#xff0c;nums[i]的下一个元素是nums[(i 1) % n]&#xff0c;nums[i]的前一个元素是nums[(i - 1 n) % n]。 子数…

flutter开发实战-ijkplayer视频播放器功能

flutter开发实战-ijkplayer视频播放器功能 使用better_player播放器进行播放视频时候&#xff0c;在Android上会出现解码失败的问题&#xff0c;better_player使用的是video_player&#xff0c;video_player很多视频无法解码。最终采用ijkplayer播放器插件&#xff0c;在flutt…

PyTorch 2.2 中文官方教程(二)

在 YouTube 上介绍 PyTorch PyTorch 介绍 - YouTube 系列 原文&#xff1a;pytorch.org/tutorials/beginner/introyt.html 译者&#xff1a;飞龙 协议&#xff1a;CC BY-NC-SA 4.0 介绍 || 张量 || 自动微分 || 构建模型 || TensorBoard 支持 || 训练模型 || 模型理解 作者&a…

BUGKU-WEB 留言板

题目描述 题目无需登录后台&#xff01;需要xss平台接收flag&#xff0c; http协议需要http协议的xss平台打开场景后界面如下&#xff1a; 解题思路 看到此类的题目&#xff0c;应该和存储型xss有关&#xff0c;也就是将恶意代码保存到服务器端即然在服务器端&#xff0c;那就…

next项目页面性能调优

next项目页面性能调优 一般来说性能优化可以分为加载时、运行时两部分的优化。 扩展参考链接&#xff1a; 前端性能优化 24 条建议 Webpack 4进阶–从前的日色变得慢 &#xff0c;一下午只够打一次包 Webpack 分包优化首屏加载 参考指标 FCP&#xff08;First Contentful P…

fghbbbbbbbbbb

欢迎关注博主 Mindtechnist 或加入【Linux C/C/Python社区】一起探讨和分享Linux C/C/Python/Shell编程、机器人技术、机器学习、机器视觉、嵌入式AI相关领域的知识和技术。 磁盘满的本质分析 专栏&#xff1a;《Linux从小白到大神》 | 系统学习Linux开发、VIM/GCC/GDB/Make工具…

双非本科准备秋招(19.2)—— 设计模式之保护式暂停

一、wait & notify wait能让线程进入waiting状态&#xff0c;这时候就需要比较一下和sleep的区别了。 sleep vs wait 1) sleep 是 Thread 方法&#xff0c;而 wait 是 Object 的方法 2) sleep 不需要强制和 synchronized 配合使用&#xff0c;但 wait 强制和 s…

初识C语言·预处理详解

目录 1 预定义符号 2 define定义常量 3 #define定义宏 4 带有副作用的宏 5 宏替换的规则 6 宏和函数的对比 7 # 和 ## i) #运算符 ii) ##运算符 8 命名约定 9 命令行定义 10 条件编译 条件编译1&#xff1a; 条件编译2&#xff1a; 条件编译3&#xff1a; 条件…

数字IC实践项目(9)— Tang Nano 20K: I2C OLED Driver

Tang Nano 20K: I2C OLED Driver 写在前面的话硬件模块RTL电路和相关资源报告SSD1306 OLED 驱动芯片SSD1306 I2C协议接口OLED 驱动模块RTL综合实现 总结 写在前面的话 之前在逛淘宝的时候偶然发现了Tang Nano 20K&#xff0c;十分感慨国产FPGA替代方案的进步之快&#xff1b;被…