基于蒙特卡洛的电力系统可靠性分析matlab仿真,对比EDNS和LOLP

目录

1.课题概述

2.系统仿真结果

3.核心程序与模型

4.系统原理简介


1.课题概述

        电力系统可靠性是指电力系统按可接受的质量标准和所需数量不间断地向电力用户供应电力和电能量的能力的量度,包括充裕度和安全性两个方面。发电系统可靠性是指统一并网的全部发电机组按可接受标准及期望数量满足电力系统的电力和电能量需求的能力的量度。发电系统可靠性指标可以分为确定性和概率性两类。过去曾广泛应用确定性可靠性指标来指导电力系统规划和运行,如百分数备用法和偶然故障备用法。目前已逐渐被概率性可靠性指标所代替。

       概率法常用的可靠性指标有:电力不足概率(Loss of Load Probability, LOLP)和期望缺供电量(Expected Demand Not Served, EDNS)是评估电力系统可靠性的两个重要指标。通过随机法和蒙特卡洛法分别对这两个指标进行仿真分析。

2.系统仿真结果

        从仿真可以看到,对于电力不足概率指标LOLP,LOLP值的可能性随着LOLP值得变大而下降,这是因为在模拟元件失效过程中,由于元件失效而导致的电力不足的可能性会出现,但是其大概率的电力不足出现概率较低,而小概率的电力不足情况出现概率较大。

        对于停电功率期望值指标EDNS,EDNS值发生可能性的随着EDNS值得变大而下降,即在实际过程中,随着元件失效而发生停电的期望值,其大概率的停电功率出现概率较低,而小概率的停电功率情况出现概率较大。

3.核心程序与模型

版本:MATLAB2022a

.....................................................................
    while (Flag == 1)
        TTT = TTT + 1;
        %断开选定的线路
        if TTT == 1
           BRANCHo(Cut_info,3:end) = 0;
           All_Del_Point= [All_Del_Point;Cut_info'];
        else
           %断开相邻的线路
           Inders1 = find(BRANCHo(:,1) == Cut_info(1));
           Inders2 = find(BRANCHo(:,1) == Cut_info(2));
           Inders3 = find(BRANCHo(:,2) == Cut_info(1));
           Inders4 = find(BRANCHo(:,2) == Cut_info(2));               
           Inders  = unique([Inders1;Inders2;Inders3;Inders4]);
           %随机选择
           tmpsss       = randperm(length(Inders));
           Inders_sel   = Inders(tmpsss(1));
           BRANCHo(Inders_sel,3:end) = 0;
           All_Del_Point= [All_Del_Point;Inders_sel];
        end
        %根据信息节点的Pdi和Pmi进行失去控制
        for i1 = 1:N-1
            P1 = rand(1);
            P2 = rand(1);
            if P1 <= Pdi(i1) | (P1 > Pdi(i1) & P2 <= Pmi) 
               %调度中心认为线路处理初始状态
               BRANCHo(i1,3:end) = 0;
               All_Del_Point= [All_Del_Point;i1];
            end    
        end
        %对此时的电器网络进行计算潮流
        Ak          = func_Admittance_matrix(BUSo,BRANCHo);
        F           = Ak * Pp;
        %判断是否越限
        for jjj = 1:length(F)
            if (abs(F(jjj))) <= (abs(Fmax(jjj)))
               %没有越限,则进行步骤5
               P = rand();
               if P <= PH
                  Flag = 1;%被选中,则继续步骤2,即重新循环
               else
                  Flag = 0;%未被选中,则继续步骤6,跳出循环
               end
            else
               %有越限,则进行步骤3 
               %先进行LP优化,这里使用PSO进行优化 
               [V_score2,PP] = func_pso_calculate_min(Bus_Num,15,Pp);
               %再计算潮流
               Ak          = func_Admittance_matrix(BUSo,BRANCHo);
               F           = Ak*(1+g)*PP;
               if sum(abs(F)) > sum(abs(Fmax))
                  Flag = 1;
               else
                   %没有越限,则进行步骤5
                   P = rand();
                   if P <= PH
                      Flag = 1;%被选中,则继续步骤2,即重新循环
                   else
                      Flag = 0;%未被选中,则继续步骤6,跳出循环
                   end
               end
            end
        end
    end
    All_Del_Point          = unique(All_Del_Point);
    LL                     = length(Fo);
    Fedns                  = zeros(LL,1);
    %对于断掉的点取1,其余取0.
    Fedns(All_Del_Point)   = 1;
    deltaP                 = abs(Fo-F);
    E1(m)                  = sum(Fedns.*deltaP)/LL;
    NUMSS(:,m)             = NUMS;
 
 
[cdf,PAPR] = ecdf(E1);
EDNS       = E1;

%%
figure;
semilogy(100*PAPR(1:end-5),1-cdf(1:end-5),'b-o','LineWidth',1);
xlabel('edns');
ylabel('The cumulative probability of failure probability');

if NUM_Delete == 1
   save attack41.mat PAPR cdf EDNS NUMSS
end
if NUM_Delete == 2
   save attack42.mat PAPR cdf EDNS NUMSS
end
02_027m

4.系统原理简介

       基于蒙特卡洛的仿真思想,并根据每次产生的随机数种子,进行随机的失效模拟,元件失效过程使用马尔科夫过程建模产生。首先随机模拟一个元件失效的情况,对一个元件失效以及对应的连锁故障情况进行仿真分析。然后随机模拟二个元件失效的情况,对二个元件失效以及对应的连锁故障情况进行仿真分析。而对于三个甚至更多元件失效的情况,本文不做考虑,这是因为当出现三个或者更多的元件失效的情况,整个电力系统网络基本会发生大规模崩溃的情况,在这种情况下做可靠性评估没有实际的价值,故不做这方面的研究。

        在本课题中,使用IEEE24-RTS电力网络系统作为案例进行分析

这里采用的仿真步骤如下:

       由于我们需要考虑随机断开一条线路或者两条线路的系统的稳定性分析,因此,我们主要通过随机循环的思想,每次循环随机的断开线路,然后分析断开这条线路对系统造成的影响进行仿真分析。

       一般情况下,对系统稳定性评估的分析方法主要是分析断开后故障网络的是否正常工作(即分析其是否崩溃)

        通常,当断开一条线路的时候,往往会由于该线路的断开而导致其他的线路的连锁故障,从而导致整个系统的影响,但是这种连锁的情况在概率统计中,并不是必然事件,而是随机事件,因此,这里我们设计如下的故障及稳定性分析方法:

        第一:首先随机的移除信息网络的信息节点,并计算对应的信息节点的传输信息时的延迟概率P。

        第二:随机的选择故障线路,并断开该线路,并更新响应的网络参数;

        第三:根据网络参数,通过直流法进行最优潮流的计算(DC OPF),并判断潮流是否存在越限,如果存在越限,则通过LP优化算法进行第四步操作,如果没有越限,则进行第五步操作。

        第四:当存在越限的时候,那么基于随机的概率,并采用轮盘赌算法选择随机跳开的线路,并进行再次转入步骤二的操作。

        第五:当不存在越限的时候,那么通过一个随机的小概率Ph选择需要跳开的线路,如果存在线路被选择,那么进入步骤二开始操作,否则进入步骤六。

        第六:本次蒙特卡洛循环结束,进入下一次循环。

5.完整工程文件

v

v

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/377573.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

如何保持mac苹果电脑系统在最佳状态?不卡顿

苹果电脑一直以其卓越的性能和用户友好的操作系统而备受欢迎。然而电脑上的文件、应用程序和缓存可能会逐渐积累&#xff0c;导致性能下降。为了确保你的苹果电脑保持最佳状态&#xff0c;高效清理是至关重要的一步。在本文中&#xff0c;我们将分享一些如何清理苹果电脑更高效…

SolidWorks学习笔记——入门知识2

目录 建出第一个模型 1、建立草图 2、选取中心线 3、草图绘制 4、拉伸 特征的显示与隐藏 改变特征名称 5、外观 6、渲染 建出第一个模型 1、建立草图 图1 建立草图 按需要选择基准面。 2、选取中心线 图2 选取中心线 3、草图绘制 以对称图形举例&#xff0c;先画出…

Qt信号和槽机制(什么是信号和槽,connect函数的形式,按钮的常用信号,QWidget的常用槽,自定义槽函数案例 点击按钮,输出文本)

一.什么是信号和槽 信号槽式Qt中的一个很重要的机制。信号槽实际上是观察者模式,当发生了感兴趣的事件&#xff0c;某一个操作就会被自动触发。当某个事件发生之后&#xff0c;比如按钮检测到自己被点击了一下&#xff0c;它就会发出一个信号。这种发出类似广播。如果有对象对…

深入理解原码、反码和补码

文章目录 前言原码反码补码原码、反码、补码之间的转换为什么需要反码和补码&#xff1f; 前言 在计算机领域&#xff0c;经常会听到原码、反码和补码这些概念。这些概念是计算机中对数值进行存储和运算的基础。本文将深入探讨这些概念&#xff0c;解释它们的定义、特点以及在…

【Git版本控制 01】基本操作

目录 一、初始配置 二、添加文件 三、查看日志 四、修改文件 五、版本回退 六、撤销修改 七、删除文件 一、初始配置 Git版本控制器&#xff1a;记录每次的修改以及版本迭代的一个管理系统。 # 初始化本地仓库&#xff1a;git init(base) [rootlocalhost gitcode]# gi…

Rust开发WASM,WASM Runtime运行

安装wasm runtime curl https://wasmtime.dev/install.sh -sSf | bash 查看wasmtime的安装路径 安装target rustup target add wasm32-wasi 创建测试工程 cargo new wasm_wasi_demo 编译工程 cargo build --target wasm32-wasi 运行 wasmtime ./target/wasm32-wasi/d…

13. UE5 RPG限制Attribute的值的范围以及生成结构体

前面几章&#xff0c;我们实现了通过GameplayEffect对Attribute值的修改&#xff0c;比如血量和蓝量&#xff0c;我们都是有一个最大血量和最大蓝量去限制它的最大值&#xff0c;而且血量和蓝量最小值不会小于零。之前我们是没有实现相关限制的&#xff0c;接下来&#xff0c;我…

JVM-运行时数据区程序计数器

运行时数据区 Java虚拟机在运行Java程序过程中管理的内存区域&#xff0c;称之为运行时数据区。《Java虚拟机规范》中规定了每一部分的作用。 程序计数器的定义 程序计数器&#xff08;Program Counter Register&#xff09;也叫PC寄存器&#xff0c;每个线程会通过程序计数器…

LoveWall v2.0Pro社区型校园表白墙源码

校园表白墙&#xff0c;一个接近于社区类型的表白墙&#xff0c;LoveWall。 源码特色&#xff1b; 点赞&#xff0c; 发评论&#xff0c; 发弹幕&#xff0c; 多校区&#xff0c; 分享页&#xff0c; 涉及违禁物等名词进行检测&#xff01; 安装教程: 环境要求&#xff1b;…

深度学习(14)--x.view()详解

在torch中&#xff0c;常用view()函数来改变tensor的形状 查询官方文档&#xff1a; torch.Tensor.view — PyTorch 2.2 documentationhttps://pytorch.org/docs/stable/generated/torch.Tensor.view.html#torch.Tensor.view示例 1.创建一个4x4的二维数组进行测试 x torch.…

什么是网络渗透,应当如何防护?

什么是网络渗透 网络渗透是攻击者常用的一种攻击手段&#xff0c;也是一种综合的高级攻击技术&#xff0c;同时网络渗透也是安全工作者所研究的一个课题&#xff0c;在他们口中通常被称为"渗透测试(Penetration Test)"。无论是网络渗透(Network Penetration)还是渗透…

Ubuntu20.04更新Cmake版本详解

最近在跑一个融合惯导定位的slam框架ins_eskf_kitti&#xff0c;在框架的安装过程中&#xff0c;需要对从GitHub上克隆下来的glog进行编译。其命令如下&#xff1a; glog&#xff1a; git clone https://github.com/google/glog.git cd glog mkdir build cd build cmake .. m…

macbook电脑如何永久删除app软件?

在使用MacBook的过程中&#xff0c;我们经常会下载各种App来满足日常的工作和娱乐需求。然而&#xff0c;随着时间的积累&#xff0c;这些App不仅占据了宝贵的硬盘空间&#xff0c;还可能拖慢电脑的运行速度。那么&#xff0c;如何有效地管理和删除这些不再需要的App呢&#xf…

电子电器架构 —— 网关测试脚本分析

电子电器架构 —— 网关测试 我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师(Wechat:gongkenan2013)。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 屏蔽力是信息过载时代一个人的特殊竞争力,任何 消耗你的人和事,多看一眼都是你的不对。非…

C语言指针函数学习2

之前写过一篇指针函数的博文&#xff1b;复习再学习一下&#xff1b; 指针函数&#xff0c;是一个函数&#xff0c;它的返回值是指针类型&#xff1b; 之前写了一个指针函数&#xff0c;返回一个 int * 类型的指针&#xff1b;下面做一个程序&#xff0c;返回一个结构体指针&a…

[Angular 基础] - 自定义事件 自定义属性

[Angular 基础] - 自定义事件 & 自定义属性 之前的笔记&#xff1a; [Angular 基础] - Angular 渲染过程 & 组件的创建 [Angular 基础] - 数据绑定(databinding) [Angular 基础] - 指令(directives) 以上是能够实现渲染静态页面的基础 之前的内容主要学习了怎么通过…

5G NR 频率计算

5G中引入了频率栅格的概念&#xff0c;也就是小区中心频点和SSB的频域位置不能随意配置&#xff0c;必须满足一定规律&#xff0c;主要目的是为了UE能快速的搜索小区&#xff1b;其中三个最重要的概念是Channel raster 、synchronization raster和pointA。 1、Channel raster …

【从Python基础到深度学习】1. 安装Python PyCharm

前言&#xff1a; 为了帮助大家快速入门机器学习-深度学习&#xff0c;从今天起我将用100天的时间将大学本科期间的所学所想分享给大家&#xff0c;和大家共同进步。【从Python基础到深度学习】系列博客中我将从python基础开始通过知识和代码实践结合的方式进行知识的分享和记…

.NET Core Web API使用HttpClient提交文件的二进制流(multipart/form-data内容类型)

需求背景&#xff1a; 在需要通过服务端请求传递文件二进制文件流数据到相关的服务端保存时&#xff0c;如对接第三方接口很多情况下都会提供一个上传文件的接口&#xff0c;但是当你直接通过前端Ajax的方式将文件流上传到对方提供的接口的时候往往都会存在跨域的情况&#xff…

详解各种LLM系列|LLaMA 1 模型架构、预训练、部署优化特点总结

作者 | Sunnyyyyy 整理 | NewBeeNLP https://zhuanlan.zhihu.com/p/668698204 后台留言『交流』&#xff0c;加入 NewBee讨论组 LLaMA 是Meta在2023年2月发布的一系列从 7B到 65B 参数的基础语言模型。LLaMA作为第一个向学术界开源的模型&#xff0c;在大模型爆发的时代具有标…