残差网络(ResNet) -深度学习(Residual Networks (ResNet) – Deep Learning)

在第一个基于cnn的架构(AlexNet)赢得ImageNet 2012比赛之后,每个随后的获胜架构都在深度神经网络中使用更多的层来降低错误率。这适用于较少的层数,但当我们增加层数时,深度学习中会出现一个常见的问题,称为消失/爆炸梯度。这会导致梯度变为0或太大。因此,当我们增加层数时,训练和测试错误率也会增加。
在这里插入图片描述

在上图中,我们可以观察到56层的CNN在训练和测试数据集上的错误率都高于20层的CNN架构。通过对错误率的进一步分析,得出错误率是由梯度消失/爆炸引起的结论。

ResNet于2015年由微软研究院的研究人员提出,引入了一种名为残余网络的新架构。

Residual Networks ResNet– Deep Learning

  • 1、残差网路
  • 2、网络架构
  • 3、代码运行
  • 4、结果与总结

1、残差网路

为了解决梯度消失/爆炸的问题,该架构引入了残差块的概念。在这个网络中,我们使用一种称为跳过连接的技术。跳过连接通过跳过中间的一些层将一个层的激活连接到其他层。这就形成了一个残块。通过将这些剩余的块堆叠在一起形成Resnets。

这个网络背后的方法不是层学习底层映射,而是允许网络拟合残差映射。所以我们不用H(x)初始映射,让网络适合。

F(x) := H(x) - x which gives H(x) := F(x) + x.

在这里插入图片描述
添加这种类型的跳过连接的优点是,如果任何层损害了体系结构的性能,那么将通过正则化跳过它。因此,这可以训练一个非常深的神经网络,而不会出现梯度消失/爆炸引起的问题。本文作者在CIFAR-10数据集的100-1000层上进行了实验。

还有一种类似的方法叫做“高速公路网”,这些网络也采用跳线连接。与LSTM类似,这些跳过连接也使用参数门。这些门决定有多少信息通过跳过连接。然而,这种体系结构并没有提供比ResNet体系结构更好的准确性。

2、网络架构

该网络采用受VGG-19启发的34层平面网络架构,并增加了快捷连接。然后,这些快捷连接将架构转换为剩余网络。
在这里插入图片描述

3、代码运行

使用Tensorflow和Keras API,我们可以从头开始设计ResNet架构(包括残块)。下面是不同的ResNet架构的实现。对于这个实现,我们使用CIFAR-10数据集。该数据集包含10个不同类别(飞机、汽车、鸟、猫、鹿、狗、青蛙、马、船和卡车)等的60,000张32×32彩色图像。该数据集可以通过keras进行评估。datasets API函数。

第1步:首先,我们导入keras模块及其api。这些api有助于构建ResNet模型的体系结构。

代码:导入库

# Import Keras modules and its important APIs
import keras
from keras.layers import Dense, Conv2D, BatchNormalization, Activation
from keras.layers import AveragePooling2D, Input, Flatten
from keras.optimizers import Adam
from keras.callbacks import ModelCheckpoint, LearningRateScheduler
from keras.callbacks import ReduceLROnPlateau
from keras.preprocessing.image import ImageDataGenerator
from keras.regularizers import l2
from keras import backend as K
from keras.models import Model
from keras.datasets import cifar10
import numpy as np
import os

第2步:现在,我们设置ResNet架构所需的不同超参数。我们还对数据集做了一些预处理,为训练做准备。

代码:设置训练超参数

# Setting Training Hyperparameters
batch_size = 32  # original ResNet paper uses batch_size = 128 for training
epochs = 200
data_augmentation = True
num_classes = 10
  
# Data Preprocessing 
subtract_pixel_mean = True
n = 3
  
# Select ResNet Version
version = 1
  
# Computed depth of 
if version == 1:
    depth = n * 6 + 2
elif version == 2:
    depth = n * 9 + 2
  
# Model name, depth and version
model_type = 'ResNet % dv % d' % (depth, version)
  
# Load the CIFAR-10 data.
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
  
# Input image dimensions.
input_shape = x_train.shape[1:]
  
# Normalize data.
x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255
  
# If subtract pixel mean is enabled
if subtract_pixel_mean:
    x_train_mean = np.mean(x_train, axis = 0)
    x_train -= x_train_mean
    x_test -= x_train_mean
  
# Print Training and Test Samples 
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
print('y_train shape:', y_train.shape)
  
# Convert class vectors to binary class matrices.
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)

第3步:在这一步中,我们根据epoch的个数来设置学习率。随着迭代次数的增加,学习率必须降低以保证更好的学习。

代码:设置不同epoch数的LR

# Setting LR for different number of Epochs
def lr_schedule(epoch):
    lr = 1e-3
    if epoch > 180:
        lr *= 0.5e-3
    elif epoch > 160:
        lr *= 1e-3
    elif epoch > 120:
        lr *= 1e-2
    elif epoch > 80:
        lr *= 1e-1
    print('Learning rate: ', lr)
    return lr

第4步:定义基本的ResNet构建块,可以用来定义ResNet V1和V2架构。

代码:基本的ResNet构建块

# Basic ResNet Building Block
  
  
def resnet_layer(inputs,
                 num_filters=16,
                 kernel_size=3,
                 strides=1,
                 activation='relu',
                 batch_normalization=True,
    conv=Conv2D(num_filters,
                  kernel_size=kernel_size,
                  strides=strides,
                  padding='same',
                  kernel_initializer='he_normal',
                  kernel_regularizer=l2(1e-4))
  
    x=inputs
    if conv_first:
        x = conv(x)
        if batch_normalization:
            x = BatchNormalization()(x)
        if activation is not None:
            x = Activation(activation)(x)
    else:
        if batch_normalization:
            x = BatchNormalization()(x)
        if activation is not None:
            x = Activation(activation)(x)
        x = conv(x)
    return x

第5步:定义基于我们上面定义的ResNet构建块的ResNet V1架构:

代码:ResNet V1架构

def resnet_v1(input_shape, depth, num_classes=10):
  
    if (depth - 2) % 6 != 0:
        raise ValueError('depth should be 6n + 2 (eg 20, 32, 44 in [a])')
    # Start model definition.
    num_filters = 16
    num_res_blocks = int((depth - 2) / 6)
  
    inputs = Input(shape=input_shape)
    x = resnet_layer(inputs=inputs)
    # Instantiate the stack of residual units
    for stack in range(3):
        for res_block in range(num_res_blocks):
            strides = 1
            if stack & gt
            0 and res_block == 0:  # first layer but not first stack
                strides = 2  # downsample
            y = resnet_layer(inputs=x,
                             num_filters=num_filters,
                             strides=strides)
            y = resnet_layer(inputs=y,
                             num_filters=num_filters,
                             activation=None)
            if stack & gt
            0 and res_block == 0:  # first layer but not first stack
                # linear projection residual shortcut connection to match
                # changed dims
                x = resnet_layer(inputs=x,
                                 num_filters=num_filters,
                                 kernel_size=1,
                                 strides=strides,
                                 activation=None,
                                 batch_normalization=False)
            x = keras.layers.add([x, y])
            x = Activation('relu')(x)
        num_filters *= 2
  
    # Add classifier on top.
    # v1 does not use BN after last shortcut connection-ReLU
    x = AveragePooling2D(pool_size=8)(x)
    y = Flatten()(x)
    outputs = Dense(num_classes,
                    activation='softmax',
                    kernel_initializer='he_normal')(y)
  
    # Instantiate model.
    model = Model(inputs=inputs, outputs=outputs)
    return model

第6步:定义基于我们上面定义的ResNet构建块的ResNet V2架构:

代码:ResNet V2架构

# ResNet V2 architecture
def resnet_v2(input_shape, depth, num_classes=10):
    if (depth - 2) % 9 != 0:
        raise ValueError('depth should be 9n + 2 (eg 56 or 110 in [b])')
    # Start model definition.
    num_filters_in = 16
    num_res_blocks = int((depth - 2) / 9)
  
    inputs = Input(shape=input_shape)
    # v2 performs Conv2D with BN-ReLU on input before splitting into 2 paths
    x = resnet_layer(inputs=inputs,
                     num_filters=num_filters_in,
                     conv_first=True)
  
    # Instantiate the stack of residual units
    for stage in range(3):
        for res_block in range(num_res_blocks):
            activation = 'relu'
            batch_normalization = True
            strides = 1
            if stage == 0:
                num_filters_out = num_filters_in * 4
                if res_block == 0:  # first layer and first stage
                    activation = None
                    batch_normalization = False
            else:
                num_filters_out = num_filters_in * 2
                if res_block == 0:  # first layer but not first stage
                    strides = 2    # downsample
  
            # bottleneck residual unit
            y = resnet_layer(inputs=x,
                             num_filters=num_filters_in,
                             kernel_size=1,
                             strides=strides,
                             activation=activation,
                             batch_normalization=batch_normalization,
                             conv_first=False)
            y = resnet_layer(inputs=y,
                             num_filters=num_filters_in,
                             conv_first=False)
            y = resnet_layer(inputs=y,
                             num_filters=num_filters_out,
                             kernel_size=1,
                             conv_first=False)
            if res_block == 0:
                # linear projection residual shortcut connection to match
                # changed dims
                x = resnet_layer(inputs=x,
                                 num_filters=num_filters_out,
                                 kernel_size=1,
                                 strides=strides,
                                 activation=None,
                                 batch_normalization=False)
            x = keras.layers.add([x, y])
  
        num_filters_in = num_filters_out
  
    # Add classifier on top.
    # v2 has BN-ReLU before Pooling
    x = BatchNormalization()(x)
    x = Activation('relu')(x)
    x = AveragePooling2D(pool_size=8)(x)
    y = Flatten()(x)
    outputs = Dense(num_classes,
                    activation='softmax',
                    kernel_initializer='he_normal')(y)
  
    # Instantiate model.
    model = Model(inputs=inputs, outputs=outputs)
    return model

第7步:下面的代码用于训练和测试我们上面定义的ResNet v1和v2架构:

代码:Main函数

# Main function 
if version == 2:
    model = resnet_v2(input_shape = input_shape, depth = depth)
else:
    model = resnet_v1(input_shape = input_shape, depth = depth)
  
model.compile(loss ='categorical_crossentropy',
              optimizer = Adam(learning_rate = lr_schedule(0)),
              metrics =['accuracy'])
model.summary()
print(model_type)
  
# Prepare model saving directory.
save_dir = os.path.join(os.getcwd(), 'saved_models')
model_name = 'cifar10_% s_model.{epoch:03d}.h5' % model_type
if not os.path.isdir(save_dir):
    os.makedirs(save_dir)
filepath = os.path.join(save_dir, model_name)
  
# Prepare callbacks for model saving and for learning rate adjustment.
checkpoint = ModelCheckpoint(filepath = filepath,
                             monitor ='val_acc',
                             verbose = 1,
                             save_best_only = True)
  
lr_scheduler = LearningRateScheduler(lr_schedule)
  
lr_reducer = ReduceLROnPlateau(factor = np.sqrt(0.1),
                               cooldown = 0,
                               patience = 5,
                               min_lr = 0.5e-6)
  
callbacks = [checkpoint, lr_reducer, lr_scheduler]
  
# Run training, with or without data augmentation.
if not data_augmentation:
    print('Not using data augmentation.')
    model.fit(x_train, y_train,
              batch_size = batch_size,
              epochs = epochs,
              validation_data =(x_test, y_test),
              shuffle = True,
              callbacks = callbacks)
else:
    print('Using real-time data augmentation.')
    # This will do preprocessing and realtime data augmentation:
    datagen = ImageDataGenerator(
        # set input mean to 0 over the dataset
        featurewise_center = False,
        # set each sample mean to 0
        samplewise_center = False,
        # divide inputs by std of dataset
        featurewise_std_normalization = False,
        # divide each input by its std
        samplewise_std_normalization = False,
        # apply ZCA whitening
        zca_whitening = False,
        # epsilon for ZCA whitening
        zca_epsilon = 1e-06,
        # randomly rotate images in the range (deg 0 to 180)
        rotation_range = 0,
        # randomly shift images horizontally
        width_shift_range = 0.1,
        # randomly shift images vertically
        height_shift_range = 0.1,
        # set range for random shear
        shear_range = 0.,
        # set range for random zoom
        zoom_range = 0.,
        # set range for random channel shifts
        channel_shift_range = 0.,
        # set mode for filling points outside the input boundaries
        fill_mode ='nearest',
        # value used for fill_mode = "constant"
        cval = 0.,
        # randomly flip images
        horizontal_flip = True,
        # randomly flip images
        vertical_flip = False,
        # set rescaling factor (applied before any other transformation)
        rescale = None,
        # set function that will be applied on each input
        preprocessing_function = None,
        # image data format, either "channels_first" or "channels_last"
        data_format = None,
        # fraction of images reserved for validation (strictly between 0 and 1)
        validation_split = 0.0)
  
    # Compute quantities required for featurewise normalization
    # (std, mean, and principal components if ZCA whitening is applied).
    datagen.fit(x_train)
  
    # Fit the model on the batches generated by datagen.flow().
    model.fit_generator(datagen.flow(x_train, y_train, batch_size = batch_size),
                        validation_data =(x_test, y_test),
                        epochs = epochs, verbose = 1, workers = 4,
                        callbacks = callbacks)
  
# Score trained model.
scores = model.evaluate(x_test, y_test, verbose = 1)
print('Test loss:', scores[0])
print('Test accuracy:', scores[1])

4、结果与总结

在ImageNet数据集上,作者使用了152层的ResNet,其深度是VGG19的8倍,但参数仍然较少。在ImageNet测试集上,这些ResNets的集合产生的错误率仅为3.7%,这一结果赢得了ILSVRC 2015竞赛。在COCO对象检测数据集上,由于它的深度表示,也产生了28%的相对改进。
在这里插入图片描述

  • 上面的结果表明,快捷连接将能够解决增加层数所带来的问题,因为当我们将层数从18层增加到34层时,ImageNet验证集上的错误率也会与普通网络不同而降低。
    在这里插入图片描述
  • 下面是ImageNet测试集的结果。ResNet的前5名错误率为3.57%,是最低的,因此ResNet架构在2015年ImageNet分类挑战中排名第一。
    在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/37757.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

可靠的手机问题修复工具分享 - 修复各种 Android 系统问题

一般来说,安卓手机都可以流畅运行。但不幸的是,有时您的Android手机可能无法正常运行,例如无响应、突然重启等。在这种情况下,您将需要Android手机维修软件。这些 Android 修复工具可以帮助您轻松解决此类问题,并还给您…

5.3 Python高级特性之-列表生成式、生成器、迭代器

一、 列表生成式 是Python内置的非常简单却强大的可以用来创建list的生成式 具体可根据如下案例理解,且代码也是可用的""" 1、 生成[0,1,2,3,4,5,6]这样列表 """ print(list(range(0, 7))) """ 2、 生成[0&#xff0…

【数据结构】树与二叉树(上)

目录 前言: 一、树: 1.树的概念: 2.树的相关概念: 3.树的表示: 4.书的实际使用场景: 二、二叉树: 1.二叉树的概念: 2.两种特殊二叉树: ①.满二叉树:…

在Vue种使用Vant框架

第一步:打开Vant框架地址 https://vant-contrib.gitee.io/vant/v2/#/zh-CN/home 第二步: 安装 第三步:引入(我这里使用的是按需导入) 执行命令: npm i babel-plugin-import -D ①:src下创建个…

Oracle解析JSON字符串

Oracle解析JSON字符串 假设某个字段存储的JSON字符串,我们不想查出来后通过一些常见的编程语言处理(JSON.parse()或者是JSONObject.parseObject()等),想直接在数据库上处理,又该如何书写呢? 其实在ORACLE中…

小程序api的promise化

小程序根目录cmd运行安装命令 npm install --save miniprogram-api-promise1.0.4 安装完成之后先到根目录中删除miniprogram_npm文件夹(不删除构建npm时可能会出现问题) 删除之后再在工具中点击构建npm 构建成功之后会看到根目录中重新出现了miniprogram_npm文件夹 在app.j…

RNN LSTM

参考资料: 《机器学习2022》李宏毅史上最详细循环神经网络讲解(RNN/LSTM/GRU) - 知乎 (zhihu.com) LSTM如何来避免梯度弥散和梯度爆炸? - 知乎 (zhihu.com) 1 RNN 的结构 首先考虑这样一个 slot filling 问题: 注意…

(简单)剑指Offer 21. 调整数组顺序使奇数位于偶数前面 Java

记数组nums的长度为n。从先nums左侧开始遍历,如果遇到的是奇数,就表示这个元素已经调整完成,继续从左往右遍历,直到遇到一个偶数。然后从nums右侧开始遍历,如果遇到的是偶数,就表示这个元素已经调整完成了&…

[JVM] 1. 初步认识JVM

核心思想: “Write Once, Run anywhere”. 各种语言通过编译器转换成字节码文件,在JVM上运行。 一、Java虚拟机 Java虚拟机是一台执行Java字节码的虚拟计算机,它拥有独立的运行机制,其运行的Java字节码也未必由Java语言编译而成…

辅助驾驶功能开发-功能规范篇(27)-2-导航式巡航辅助NCA

书接上回 2.2.2.3规划控制模块 2.2.2.3.1.全局导航规划 当用户输入导航终点时,全局导航规划模块会根据高精地图的覆盖区域将全局导航路径分为ICA,NCA可用段。实现ICA/NCA功能的划分及自动升降级。 当自车未按照导航路径行驶时(如未使出指定匝道,路口未…

折叠屏手机的屏幕,华为Mate X3给出了一份“内外兼修”的解决方案

说起折叠屏手机,屏幕一直都是这个领域的重头戏,很多人都对折叠屏手机有一种刻板印象,那就是脆弱。但是,3月份华为最新推出的Mate X3可以说是非常的亮眼,在内外屏幕、水滴铰链、影像系统等多个核心部件的全方位提升&…

Python面向对象学习整理(一)

一、面向对象中的几点概念 1.1 什么是类? 类:用户定义的对象原型(prototype),该原型定义了一组可描述该类任何对象的属性,属性是数据成员(类变量 和 实例变量)和方法,可…

FPGA实验三:状态机的设计

目录 一、实验目的 二、实验要求 三、实验代码 1.design source文件部分代码 2.测试文件代码 四、实验结果及分析 1、引脚锁定 2、仿真波形及分析 (1)设计好序列检测器 (2)仿真波形(检测11010) 3…

Python爬虫实战之原神公告获取

前言 好久不见了吧,博主最近也是成为了准高三,没有太多时间去创作文章了,所以这篇文章很有可能是高考前最后一篇文章了(也不一定😉) 言归正传,本次文章主要讲解如何去爬取原神官网的公告(我不玩原神!&…

英飞凌BLDC驱动芯片替换-屹晶微

EG12521替代IR2106,NCP5106 EG2003替代IR2003 EG2103替代IR2103、IRS2003,IRS2108 EG2104替代IR2104 EG2104D替代IR2104、IR2008、IR2004 EG2104M替代IR2104、IR2008、IR2004 EG2104S替代IR2104 EG2106替代IR2106、IR2101、FAN7382、IRS2005、NCP…

使用flask开启一个简单的应用

Flask是非常流行的 Python Web框架,它能如此流行,原因主要有如下几点: 。有非常齐全的官方文档,上手非常方便。 。有非常好的扩展机制和第三方扩展环境,.工作中常见的软件都会有对应的扩展。自己动手实现扩展也很容易。 。社区活跃度非常高。…

基于springboot的智慧养老系统

博主主页:猫头鹰源码 博主简介:Java领域优质创作者、CSDN博客专家、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战 主要内容:毕业设计(Javaweb项目|小程序等)、简历模板、学习资料、面试题库、技术咨询 文末联系获取 项目介绍…

less 笔记

1 margin-left 之后有 margin: 0 导致margin-left 无效 --> 不能重复定义 .btn-group {margin-left: calc(100% - 350px);display: inline-block;margin: 0; // 重复定义 导致上面 没有效果padding: 0; } 2 一定要F12检查元素 看各个div的宽度是否太长 导致靠左靠右 计算不…

[SSM]Spring6基础

目录 一、Spring启示录 1.1OCP开闭原则 1.2DIP依赖倒置原则 1.3IoC控制反转 1.4DI依赖注入 二、Spring概述 2.1Spring简介 2.2Spring八大模块 2.3Spring特点 三、Spring的入门程序 3.1Spring的文件 3.2第一个Spring程序 3.3第一个Spring程序详细剖析 3.4Spring6启…

Vue绑定class样式

效果&#xff1a;指定变换成某种颜色 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>Title</title><style>.basic{width: 400px;height: 100px;border: 1px solid black;}.happy{backg…