机器学习中常用的性能度量—— ROC 和 AUC

什么是泛化能力?

通常我们用泛化能力来评判一个模型的好坏,通俗的说,泛化能力是指一个机器学期算法对新样本(即模型没有见过的样本)的举一反三的能力,也就是学以致用的能力。

举个例子,高三的学生在高考前大量的刷各种习题,像五年高考三年模拟、三年高考五年模拟之类的,目的就是为了在高考时拿到一个好的分数,高考的题目就是新题,一般谁也没做过,平时的刷题就是为了掌握试题的规律,能够举一反三、学以致用,这样面对新的题目也能从容应对。这种规律的掌握便是泛化能力,有的同学很聪明,考上名校,很大程度上是该同学的泛化能力好。

在机器学习中,对于分类和回归两类监督学习,分别有各自的评判标准,这里我们讨论常用于分类任务的性能度量标准——AUC 和 ROC。


几个重要概念:混淆矩阵、准确率、精准率和召回率

1. 混淆矩阵

假设我们建立的是二分类模型,将实际类别和预测类别进行两两组合,就形成了混淆矩阵。

真实情况预测结果
正例反例
正例TP(真正例)FN(假反例)
反例FP(假正例)TN(真反例)

接下来的性能度量指标都是由混淆矩阵的各个元素计算得来。

2. 准确率

准确率 = T P + T N T P + T N + F P + F N 准确率=\frac{TP+TN}{TP+TN+FP+FN} 准确率=TP+TN+FP+FNTP+TN

在样本均衡的情况下,准确率是一个适用的性能度量指标,但是,在样本不平衡的情况下,并不能很好的衡量结果。例如,在信用风险评估中,正样本为 90%,负样本(发生违约的样本)为 10%,样本严重失衡,在这种情况下,即使我们全部将样本预测为正样本,正确率也会达到 90%的高准确率。这也说明了,在样本失衡相对严重的情况下,即使准确率很高,结果也会有很大的水份,准确率指标会失效。

3. 查准率

查准率(Precision)又叫精准率,是指在所有被预测为正的样本中实际为正的样本的概率,即在预测为正的样本中,我们有多少把握可以预测正确:

查准率 = T P T P + F P 查准率=\frac{TP}{TP+FP} 查准率=TP+FPTP

查准率和准确率的区别在于:查准率代表对正样本结果中的预测精度,而准确率则代表整体的预测准确程度,既包括正样本,也包括负样本。

4. 召回率

召回率(Recall)又叫查全率,指在实际为正的样本中被预测为正样本的概率。应用场景:在网贷信用风险评估中,相对好用户,我们更关心坏用户,不能错放任何一个坏用户,因为如果我们过多的将坏用户当成好用户,这样后续可能发生的违约金额会远超过好用户偿还的借贷利息金额,造成严重亏损。召回率越高,表示实际坏用户被预测出来的概率越高,即“宁可错杀一千,绝不放过一个。”

精准率 = T P / ( T P + F N ) 精准率=TP/(TP+FN) 精准率=TP/(TP+FN)

一般来说,查准率和召回率是一对矛盾的度量。查准率高时,查全率往往偏低;而查全率高时,查准率往往偏低。
例如,若希望将好瓜尽可能多地选出来,则可通过增加选瓜的数量来实现,如果将所有西瓜都选上,那么所有的好瓜也必然都被选上了,但这样查准率就会较低;若希望选出的瓜中好瓜比率尽可能高,则可只挑选最有把握的瓜,但这样就难免会漏掉不少好瓜,使得查全率较低,通常只有在一些简单的任务中,才可能使查全率和查准率都很高。

如果想要在两者之间找到一个平衡点,通常会使用 F1 分数,它同时考虑了查准率和查全率,让二者同时达到最高,取一个平衡。

F 1 = 2 × 查准率 × 召回率 ( 查准率 + 召回率 ) F1=\frac{2 \times 查准率 \times 召回率}{(查准率+召回率)} F1=(查准率+召回率)2×查准率×召回率


ROC和AUC

1. 真正率和假正率

ROC 和 AUC 可以在无视样本不平衡的情况下进行性能度量,关键在于两个指标:真正率(TPR)和假正率(FPR),其中真正率也叫灵敏度(Sensitivity),假正率则为 1-特异度(Specifucity)。

真正率 ( T P R ) = 灵敏度 = T P T P + F N 真正率(TPR)=灵敏度=\frac{TP}{TP+FN} 真正率(TPR)=灵敏度=TP+FNTP
假正率 ( F R P ) = 1 − 特异度 = F P F P + T N 假正率(FRP)=1-特异度=\frac{FP}{FP+TN} 假正率(FRP)=1特异度=FP+TNFP

可以发现 TPR 和 FPR 分别是基于真实情况 1 和 0 出发的,即分别在真实情况下的正样本和负样本中来观察相关概率问题,正因为如此,所以无论样本是否平衡,都不会被影响。在之前的信用评估例子中,90% 为正样本,10% 为负样本,我们知道用准确率衡量结果是有水份的,但是用 TPR 和 FPR 不一样,这里,TPR 只关注 90% 正样本中有多少是真正被覆盖的,而与剩余 10% 无关,同理,FPR 只关注 10% 负样本中有多少是被错误覆盖的,也与其他 90% 毫无关系,所以可以看出:如果我们从实际表现的各个结果角度出发,就可以避免样本不平衡的问题了,这也是为什么选用 TPR 和 FPR 作为 ROC/AUC 指标的原因。

2. ROC-接受者操作特征曲线

ROC(Receiver Operating Characteristic)曲线,又称接受者操作特征曲线,最早应用于雷达信号检测领域,用于区分信号和噪声。后来人们将其用于评价模型的预测能力,ROC 曲线是基于混淆矩阵得出的。

ROC曲线中横坐标为假正率(FPR),纵坐标为真正率(TPR),是通过遍历所有阈值来绘制整条曲线的,当我们不断的遍历所有阈值,预测的正样本和负样本是不断变化,相应的在 ROC 曲线图中就会沿着曲线滑动。

在这里插入图片描述

改变阈值只是不断的改变正负样本数,即 TPR 和 FPR,但是曲线本身是不会改变的。那如何通过 ROC 来判断一个模型的好坏呢?我们知道 FRP 表示模型虚报的响应程度,TPR 表示模型预测响应的覆盖程度,一个好的模型虚报的越少越好,覆盖的越多越好,这就等价于 TPR 越高,同时 FPR 越低,即 ROC 曲线越陡时,模型的性能就越好。

在这里插入图片描述

之前已经讨论了 ROC 曲线为什么可以无视样本的不平衡,这里通过动图进行演示,可以发现:无论红蓝样本比率如何改变,ROC 曲线都没有影响。

在这里插入图片描述

3. AUC-曲线下面积

AUC 是一种基于排序的高效算法,取值越大,代表模型的预测效果越好,其一般判断标准为:

  • 0.5~0.7:效果较低;
  • 0.7~0.85:效果一般
  • 0.85~0.95:效果很好
  • 0.95~1:效果非常好,但很可能是过拟合导致的

skleanmetrics 对 ROC 和 AUC 的计算进行了实现。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/372244.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

BUUCTF-Real-[ThinkPHP]IN SQL INJECTION

目录 漏洞描述 漏洞分析 漏洞复现 漏洞描述 漏洞发现时间&#xff1a; 2018-09-04 CVE 参考&#xff1a;CVE-2018-16385 最高严重级别&#xff1a;低风险 受影响的系统&#xff1a;ThinkPHP < 5.1.23 漏洞描述&#xff1a; ThinkPHP是一款快速、兼容、简单的轻量级国产P…

Stable Diffusion 模型下载:ReV Animated

文章目录 模型介绍生成案例案例一案例二案例三案例四案例五案例六案例七案例八案例九案例十下载地址模型介绍 该模型能够创建 2.5D 类图像生成。此模型是检查点合并,这意味着它是其他模型的产物,以创建从原始模型派生的产品。 条目内容类型大模型

游戏视频录制软件推荐,打造专业电竞视频(3款)

随着游戏产业的快速发展&#xff0c;越来越多的玩家开始关注游戏视频录制软件。一款好的录制软件不仅可以帮助玩家记录游戏中的精彩瞬间&#xff0c;还可以让其与他人分享自己的游戏体验。接下来&#xff0c;我们将介绍三款热门的游戏视频录制软件&#xff0c;并对其进行详细的…

pwn学习笔记(2)

pwn学习笔记&#xff08;2&#xff09; 1.三种常见的寄存器&#xff1a; ​ ax寄存器&#xff1a;通用寄存器&#xff0c;可用于存放多种数据 ​ bp寄存器&#xff1a;存放的是栈帧的栈底地址 ​ sp寄存器&#xff1a;存放的是栈顶的地址 2.栈帧与栈工作的简介&#xff1a…

arping交叉编译

arping命令依赖libpcap和libnet&#xff0c;需要先交叉编译这两个库。 1.交叉编译libpcap 下载libpcap源文件&#xff0c;从github上克隆: git clone https://github.com/the-tcpdump-group/libpcap.git source交叉编译环境 # environment-setup是本机的交叉编译环境, 里面…

Centos7配置登录失败处理导致root被锁定处理办法

1、应用场景 root用户被系统锁定&#xff0c;无法登录系统。 2、问题现象 root锁定无法登录系统 3、原因 设置登录失败处理并对root用户生效&#xff0c;一直尝试错误的root密码或暴力破解root密码&#xff0c;导致无法自动解锁Linux的root账户 4、解决方案 1.将虚拟机开…

0 代码自动化测试:RF 框架实现企业级 UI 自动化测试

前言 现在大家去找工作&#xff0c;反馈回来的基本上自动化测试都是刚需&#xff01;没有自动化测试技能&#xff0c;纯手工测试基本没有什么市场。 但是很多人怕代码&#xff0c;觉得自动化测试就需要代码&#xff01;代码学习起来很难&#xff01; 当然代码学习不难&#xf…

重生奇迹MU如何挂机

1、重生奇迹MU觉醒哪里挂机经验多挂机收益最大化&#xff0c;在重生奇迹MU中玩家可以通过副本获得大量的经验和金币&#xff0c;甚至挂机也有不错的收益&#xff0c;对于玩家来说 2、卡利玛神庙、血色城堡、迷失之城、恶魔广场甚至是挂机自动刷怪&#xff0c;组队都会有经验加…

骑砍战团MOD开发(43)-顶点着色技术

一.顶点着色(vertex_color) 实际GPU渲染时有顶点着色和纹理着色两种方式,顶点着色消耗资源小,GPU将顶点颜色通过插值运算进行渲染.常用于同一物体的不同颜色渲染,如青苹果,红苹果,可以使用动态切换顶点颜色实现,而不通过设置纹理图片实现. Direct3D9中可声明灵活顶点格式 stru…

TorchVision的使用方法、更改默认路径

TorchVision的使用 1. 转换和增强图像 torchvision.transforms.v2 参数作用Resize将输入调整为给定大小RandomShortestSize随机调整输入的大小RandomResize随机调整输入的大小RandomCrop在随机位置裁剪输入RandomResizedCrop裁剪输入的随机部分并将其调整为给定大小RandomIoU…

为什么PCB地与金属机壳用阻容连接?

笔者电子信息专业硕士毕业&#xff0c;获得过多次电子设计大赛、大学生智能车、数学建模国奖&#xff0c;现就职于南京某半导体芯片公司&#xff0c;从事硬件研发&#xff0c;电路设计研究。对于学电子的小伙伴&#xff0c;深知入门的不易&#xff0c;特开次博客交流分享经验&a…

Java的值传递与“引用传递”辨析

目录 Java的值传递与“引用传递”辨析1. 传递方式概述2. 值传递示例3. “引用传递”示例4. 值传递与"引用传递"的实际应用5. 总结&#xff1a;java只有值传递 Java的值传递与“引用传递”辨析 欢迎来到本博客&#xff0c;今天我们将深入研究Java中是值传递还是引用传…

【文件增量备份系统】前端项目构建

文章目录 创建项目安装项目依赖引入element plus组件下载组件在main.js中使用组件测试 整合路由router下载组件创建路由管理器index.js使用路由App.vue上面使用 <router-view />测试 整合axios下载组件工具类axiosRequest.js工具类使用 创建项目 damwangrunqindeMBP dev…

蓝桥杯刷题day06——平均

1、题目描述 有一个长度为n 的数组&#xff08;n 是 10 的倍数&#xff09;&#xff0c;每个数ai都是区间 [0,9] 中的整数。 小明发现数组里每种数出现的次数不太平均&#xff0c;而更改第i 个数的代价为bi&#xff0c; 他想更改若干个数的值使得这10 种数出现的次数相等&…

论文阅读-一个用于云计算中自我优化的通用工作负载预测框架

论文标题&#xff1a;A Self-Optimized Generic Workload Prediction Framework for Cloud Computing 概述 准确地预测未来的工作负载&#xff0c;如作业到达率和用户请求率&#xff0c;对于云计算中的资源管理和弹性非常关键。然而&#xff0c;设计一个通用的工作负载预测器…

软考 系统分析师系列知识点之信息系统战略规划方法(1)

所属章节&#xff1a; 第7章. 企业信息化战略与实施 第4节. 信息系统战略规划方法 信息系统战略规划&#xff08;Information System Strategic Planning&#xff0c;ISSP&#xff09;是从企业战略出发&#xff0c;构建企业基本的信息架构&#xff0c;对企业内、外信息资源进行…

AI专题:海外科技巨头指引,AI主线逻辑依旧坚挺

今天分享的是AI 系列深度研究报告&#xff1a;《AI专题&#xff1a;海外科技巨头指引&#xff0c;AI主线逻辑依旧坚挺》。 &#xff08;报告出品方&#xff1a;华西证券&#xff09; 报告共计&#xff1a;54页 本周热点:海外科技巨头指引&#xff0c;AI主线逻辑依旧坚挺 硬件…

【教3妹学编程-算法题】1696. 跳跃游戏 VI

3妹&#xff1a;好冷啊&#xff0c; 冻得瑟瑟发抖啦 2哥 : 没想到都立春了还这么冷啊~ 3妹&#xff1a;暴雪、冻雨、大雨&#xff0c;这天气还让不让人活啦&#xff01;&#xff01;&#xff01; 2哥 :哎&#xff0c;好多人都滞留的高铁站了&#xff0c;没法回家了 3妹&#xf…

Jetson AGX Orin安装Anaconda,Cuda,Cudnn,pytorch,Tensorrt,ROS

Anaconda&#xff1a;https://repo.anaconda.com/archive/ Cuda&#xff1a;https://forums.developer.nvidia.com/t/pytorch-for-jetson/72048 1&#xff1a;安装Anaconda3 下载&#xff1a;Anaconda3-2021.11-Linux-aarch64.sh chmod x Anaconda3-2021.11-Linux-aarch64.s…

部署自己的捕鱼达人

目录 效果 安装 1.安装httpd 2.下载捕鱼达人 3.启动httpd 效果 安装 1.安装httpd yum -y install httpd systemctl enable httpd 2.下载捕鱼达人 cd /var/www/html/ git clone https://gitee.com/WangZhe168_admin/Fishing-talentGame.git 3.启动httpd systemctl st…