AIGC 为何能火爆全网,赋能智能时代?

Hi,大家好,我是半亩花海。2023年,人工智能新浪潮涌起,AIGC 火爆全网,不断赋能各大行业。从短视频平台上火爆的“AI 绘画”,到智能聊天软件 ChatGPT,都引起了大家的广泛关注。那么 AIGC 到底是什么?为什么如此引人关注?AIGC 能产生什么样的应用价值?本文主要从 AIGC 的核心技术与原理、典型应用场景和落地产品形态来探索 AIGC。


目录

一、AIGC 的简要介绍

二、AIGC 的核心技术

1. 基础模型

(1)变分自编码(Variational Autoencoder,VAE)

(2)生成对抗网络(Generative Adversarial Networks,GAN)

(3)扩散模型(Diffusion Model,里程碑式模型)

(4)Transformer

(5)Vision Transformer(ViT)

2. 预训练大模型

(1)计算机视觉(CV)

(2)自然语言处理(NLP)

(3)多模态

三、AIGC 的应用场景

1. 新文报道

2. 新媒体运营

3. 短视频策划

4. 广告创意

5. 游戏设计

6. 教育内容

四、AIGC 的产品形态

1. 基础层(模型服务)

2. 中间层(2B)

3. 应用层(2C)

五、AIGC 平台和工具


一、AIGC 的简要介绍

AIGC(Artificial Intelligence Generated Content)即生成式人工智能,是一种利用人工智能技术自动生成内容的新技术,是相对于专业生成内容PGC,Professional-generated Content)和用户生成内容UGC,User-generated Content)而提出的概念。

百度百科对于 AIGC 给出的概念与定义是:AIGC 技术的核心思想是利用人工智能算法生成具有一定创意和质量的内容。通过训练模型和大量数据的学习,AIGC 可以根据输入的条件或指导,生成与之相关的内容。例如,通过输入关键词、描述或样本,AIGC 可以生成与之相匹配的文章、图像、音频等。

互联网时代Web 1.0Web 2.0Web 3.0/元宇宙
内容生成方式PGC(专业生成)UGC(用户生成)AIGC(AI 生成)
特点专业、质量有保障自由上传、内容丰富高效率

二、AIGC 的核心技术

现阶段国内 AIGC 多以单模型应用的形式出现,主要分为文本生成、图像生成、视频生成、音频生成,其中文本生成成为其他内容生成的基础。实现 AIGC 更加智能化、实用化的三大要素是:数据、算力、算法

1. 基础模型

模型名称提出时间应用场景
1、深度变分自编码(VAE2013年图像生成、语音合成
2、生成对抗神经网络(GAN2014年图像生成、语音合成
3、扩散模型(Diffusion Model)--DALL-E 2、Imagen2015年图像生成
4、Transformer2017年语言模型
5、Vision Transformer(ViT2020年视觉模型

(1)变分自编码(Variational Autoencoder,VAE

VAE 分为两部分,编码器与解码器。

  • 编码器:将原始高维输入数据转换为潜在空间的概率分布描述。
  • 解码器:从采样的数据进行重建生成新数据。

(2)生成对抗网络(Generative Adversarial Networks,GAN

GAN 包含生成器和判别器两个部分:

  • 生成器:学习生成合理的数据。对于图像生成来说是给定一个向量,生成一张图片。其生成的数据作为判别器的负样本。
  • 判别器:判别输入是生成数据还是真实数据。网络输出越接近于0,生成数据可能性越大;反之,真实数据可能性越大。

(3)扩散模型(Diffusion Model,里程碑式模型

扩散是受到非平衡热力学的启发,定义一个扩散步骤的马尔科夫链,并逐渐向数据中添加噪声,然后学习逆扩散过程,从噪声中构建出所需的样本。扩散模型的最初设计是用于去除图像中的噪声。随着降噪系统的训练时间越来越长且越来越好,可以从纯噪声作为唯一输入,生成逼真的图片。

一个标准的扩散模型分为两个过程:前向过程与反向过程。

  • 前向扩散过程:向原图中逐步加入噪声,直到图像成为完全随机噪声。
  • 反向降噪过程:在每个时间步逐步去除噪声,从而从高斯噪声中恢复源数据。

产品与模型:

  • DALL-E 2(OpenAI 文本生成图像,图像生成图像)
  • Imagen(Google Research 文本生成图像)
  • Stable Diffusion(Stability AI 文本生成图像,代码与模型开源

(4)Transformer

采用 Transformer 作为基础模型,发展出了 BERT,LaMDA、PaLM 以及 GPT 系列。人工智能开始进入大模型参数的预训练模型时代。

(5)Vision Transformer(ViT

ViT 将图片分为 14*14 的 patch,并对每个 patch 进行线性变换得到固定长度的向量送入 Transformer,后续与标准的 Transformer 处理方式相同。以 ViT 为基础衍生出了多重优秀模型,如 SwinTransformer,ViTAE Transformer 等。以 ViT 为代表的视觉大模型赋予了 AI 感知、理解视觉数据的能力,助力 AIGC 发展。

2. 预训练大模型

虽然过去各种模型层出不穷,但是生成的内容偏简单且质量不高,远不能够满足现实场景中灵活多变以高质量内容生成的要求。预训练大模型的出现使 AIGC 发生质变,诸多问题得以解决。大模型在 CV/NLP/多模态领域成果颇丰。诸如,去年爆火的聊天对话模型 ChatGPT,基于 GPT-3.5 大模型发展而来。经典的预训练大模型如下表所示。

计算机视觉(CV)微软 Florence(SwinTransformer)
自然语言处理(NLP)谷歌 Bert LaMDA PaLMOpenAI 的 GPT-3 ChatGPT
多模态OpenAI 的 CLIP DALL-E微软的 GLIPStability AI的 Stable Diffusion

(1)计算机视觉(CV)

  • Florence

Florence 采用双塔 Transformer 结构。文本采用 12 层 Transformer,视觉采用 SwinTransformer。其可处理的下游任务包括:图文检索、图像分类、目标检测、视觉问答以及动作识别。

(2)自然语言处理(NLP)

  • Bert

Bert 基于 Transformer 的双向编码器表示,通过在所有层中联合调节左右语境,从未标记的文本中预训练深度双向表征。因此,预训练的 BERT 模型可以通过一个额外的输出层进行微调,以创建最先进的模型,用于更广泛的任务,而无需对特定任务的架构进行大量修改。

Bert 模型的目标是利用大规模无标注语料训练、获得文本的包含丰富语义信息的 Representation,即:文本的语义表示,然后将文本的语义表示在特定 NLP 任务中作微调,最终应用于该 NLP 任务。

  • ChatGPT

ChatGPT 是美国 OpenAI 公司在 2022 年 11 月发布的智能对话模型。ChatGPT 引入了人类反馈强化学习,其训练的整体流程主要分为 3 个阶段,预训练与提示学习阶段,结果评价与奖励建模阶段以及强化学习自我进化阶段;3 个阶段分工明确,实现了模型从模仿期、管教期、自主期的阶段转变。

ChatGPT 的显著特点如下:

  • 主动承认错误:若用户指出其错误,模型会听取,并优化答案。
  • 敢于质疑:对用户提出的问题,如存在常识性错误,ChatGPT 会指出提问中的错误。
  • 承认无知:对于非常专业的问题或超出安全性范围,如果 ChatGPT 不清楚答案,会主动承认无知。
  • 支持连续多轮对话:ChatGPT能够记住先前对话内容,并展开多轮自然流畅对话。

Bert 和 OpenAI GPT 都是微调方法,但 Bert 使用一个双向的 Transformer,而 OpenAI GPT 使用一个从左到右的 Transformer。在架构上,Bert 的表征在所有层中是以左和右的上下文为共同条件。Bert 和 OpenAI GPT 二者的形象区别如下图。 

(3)多模态

  • CLIP(OpenAI)

CLIP(Contrastive Language-Image Pre-training)是一种基于对比文本-图像的预训练方法或者模型。采用双塔模型比对学习训练方式进行训练。

  • Stable Diffusion(Stablility AI)

Stable Diffusion 是英国伦敦 Stability AI 公司开源的图像生成扩散模型,其从功能上来说主要包括两个方面:

  • 利用文本输入来生成图像(Text-to-Image
  • 对图像根据文字描述进行修改(输入为文本 + 图像

三、AIGC 的应用场景

AIGC 在各个领域都有广泛的应用,下面我们来看一些主要领域:

1. 新文报道

AIGC 可以通过自然语言处理和机器学习技术,帮助新闻机构分析海量的新闻数据,提供实时的信息监测和事件预测能力。它还可以生成自动摘要、分类和标记新闻文章,辅助记者进行快速信息筛选和挖掘。

2. 新媒体运营

AIGC 可以通过分析社交媒体数据和用户行为模式,帮助企业和机构优化其社交媒体运营策略。它可以识别热门话题和趋势,推荐合适的内容发布时间和方式,并提供数据驱动的决策支持。

3. 短视频策划

AIGC 可以利用计算机数据算法和图像处理技术,自动生成短视频拍摄的脚本,生成对应的参考样片,也可以从大量的素材中选取最佳的片段,并进行自动剪辑和编辑,以快速生成吸引人的短视频内容。

4. 广告创意

AIGC 可以利用计算机视觉和图像识别算法,分析大量的图像和视频数据,从中提取特征并生成创意性的广告内容。它可以根据目标受众的喜好和需求,自动生成个性化的广告,并优化广告投放效果。

5. 游戏设计

AIGC 可以在游戏设计过程中发挥重要作用。它可以帮助游戏开发人员创建智能的虚拟角色和敌对AI,增强游戏的可玩性和挑战性。同时,AIGC 还可以分析玩家行为和反馈数据,提供个性化的游戏体验,优化游戏关卡设计和平衡性。

6. 教育内容

AIGC 可以为教育领域带来许多创新。它可以根据学生的学习情况和兴趣,生成个性化的教学内容和练习题,提供定制化的学习路径和反馈。


四、AIGC 的产品形态

1. 基础层(模型服务)

基础层为采用预训练大模型搭建的基础设施。由于开发预训练大模型技术门槛高、投入成本高,因此,该层主要由少数头部企业或研发机构主导。如谷歌、微软、Meta、OpenAI、DeepMind、Stability.ai 等。基础层的产品形态主要包括两种:一种为通过受控的 API 接口收取调用费;另一种为基于基础设施开发专业的软件平台收取费用

2. 中间层(2B)

该层与基础层的最主要区别在于,中间层不具备开发大模型的能力,但是可基于开源大模型等开源技术进行改进、抽取或模型二次开发。该层为在大模型的基础上开发的场景化、垂直化、定制化的应用模型或工具。在 AIGC 的应用场景中基于大模型抽取出个性化、定制化的应用模型或工具满足行业需求。如基于开源的 Stable Diffusion 大模型所开发的二次元风格图像生成器,满足特定行业场景需求。中间层的产品形态、商业模式与基础层保持一致,分别为接口调用费与平台软件费

3. 应用层(2C)

应用层主要基于基础层与中间层开发,面向C端的场景化工具或软件产品。应用层更加关注用户的需求,将 AIGC 技术切实融入用户需求,实现不同形态、不同功能的产品落地。可以通过网页、小程序、群聊、app 等不同的载体呈现。

基础模型与预训练大模型的发展,促使 AIGC 迎来质变期与大规模应用期,未来随着核心技术演进、产品形态丰富、场景应用多元化、生态建设的日益完善,AIGC 将充分释放应用价值与商业潜力。


五、AIGC 平台和工具

以下是15个 AIGC 图片生成平台,如下: 

​​​​​​分享15个全球顶尖的AIGC图片生成平台_ai生成图片网站-CSDN博客

另外,我这里有 600 个关于 AIGC 工具的文件:600多个人工智能AI工具汇总(AIGC时代-超级个体的崛起).xlsx感兴趣的朋友可以评论区或者私信我

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/369666.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

浙政钉访接口:k8s+slb容器日志报错(:Temporary failure in name resolution。)

在此我只能说兄弟,浙政钉的扫码接口和用户详情返回这两个接口是不需要白名单的, 我们文明人先确定一件事就是,你代码本地能调用到浙政钉返回。ecs服务器curl浙政钉也通的: 这时候和你说要开通白名单的,请放开你的道德…

r0下进程保护

简介 SSDT 的全称是 System Services Descriptor Table,系统服务描述符表。这个表就是一个把 Ring3 的 Win32 API 和 Ring0 的内核 API 联系起来。SSDT 并不仅仅只包含一个庞大的地址索引表,它还包含着一些其它有用的信息,诸如地址索引的基地…

如何强制关掉系统或应用程序?这里提供详细方法

总的来说,Windows相当可靠,但有时会挂断并崩溃。我们如何在最少麻烦的情况下重返工作或游戏?为此,我们需要强制退出操作系统。 在本教程中,我们将向你展示如何在最坏的情况下安全关闭或重新启动计算机。我们还将向你展示如何在不触摸鼠标的情况下强制关闭应用程序和快速关…

【51单片机】开发板和单片机的介绍(2)

前言 大家好吖,欢迎来到 YY 滴单片机系列 ,热烈欢迎! 本章主要内容面向接触过单片机的老铁 主要内容含: 欢迎订阅 YY滴C专栏!更多干货持续更新!以下是传送门! YY的《C》专栏YY的《C11》专栏YY的…

挖矿系列:细说Python、conda 和 pip 之间的关系

继续挖矿,挖金矿! 1. Python、conda 和 pip Python、conda 和 pip 是在现代数据科学和软件开发中常用的工具,它们各自有不同的作用,但相互之间存在密切的关系: Python:是一种解释型、面向对象的高级程序设…

【数据集】全国地级市-平均受教育年限-男、女数据集(2000-2020年)

平均受教育年限用以衡量地区的人力资本,指对一定时期、一定区域某一人口群体接受学历教育的年数总和的平均值。参考陈熠辉(2023)等人的计算方式,根据第五次人口普查、第六次人口普查、第七次人口普查结果整理了地级市的平均受教育…

CentOS下安装vlc

一、引言 vlc是一跨多媒体播放器,可以播放本地媒体文件和网络串流,帮助我们排查音视频开发过程中遇到的问题。大部分情况下,我们只需要在Windows系统下安装vlc就可以了。但有一种情况是需要在Linux下安装vlc的:我们的音视频拉流软…

2024美赛C题完整解题教程及代码 网球运动的势头

2024 MCM Problem C: Momentum in Tennis (网球运动的势头) 注:在网球运动中,"势头"通常指的是比赛中因一系列事件(如连续得分)而形成的动力或趋势,这可能对比赛结果产生重要影响。球…

打开率超90%的开发信标题,原来要这样写

写开发信时,邮件标题的撰写尤为重要,买家收到邮件的时候,在手机或其它移动设备上弹出来的信息就是邮件标题和正文第一句话。 好的标题能吸引买家打开邮件,开启高回复率的第一步,下面给大家介绍一下如何撰写高打开率的开…

Linux网络通信——TCP/OSI七层模型/TCP/IP(五层或四层模型)/HTTP报文传输原理

文章目录 消息的传输什么是OSI七层模型OSI七层模型的内容物理层(Physical Layer):数据链路层(Data Link Layer):网络层(Network Layer):传输层(Transport Lay…

vulhub中 Apache Airflow Celery 消息中间件命令执行漏洞复现(CVE-2020-11981)

Apache Airflow是一款开源的,分布式任务调度框架。在其1.10.10版本及以前,如果攻击者控制了Celery的消息中间件(如Redis/RabbitMQ),将可以通过控制消息,在Worker进程中执行任意命令。 1.利用这个漏洞需要控…

css1字体属性

一.font-family(字体系列) 不同字体系统用,隔开; 多个字母的字体系统用“”; 二.font-size(字体大小)(有单位px)(默认字体16px) 三.font-weight&#xff08…

linux虚拟机升级g++编译器版本

原先的 更新你的软件包列表: sudo apt update 添加Ubuntu Toolchain PPA(Personal Package Archive),这是一个提供较新编译器版本的第三方软件源: sudo add-apt-repository ppa:ubuntu-toolchain-r/test 再次更新软件包…

gateway网关路由配置

搭建项目(略) gatewa配置文件 server:port: 9999 spring:application:name: gatewaycloud:nacos:discovery:server-addr: localhost:8848username: nacospassword: nacosgateway:routes:- id: api-service1uri: lb://user-login-api #服务名predicat…

Windows下MySQL的界面安装

华子目录 下载MySQL安装MySQL配置MySQL配置环境变量检验MySQL是否安装成功 下载MySQL 首先我们在MySQL的官方下载MySQL https://www.mysql.com 点击download,开始下载 安装MySQL 下载完成后,我们双击msi文件 再点击next 之后我们先勾选I acc…

Qt事件机制

文章目录 1 事件机制2 ignore 和 accept3 bool event(QEvent *event);4 bool eventFilter(QObject *watched, QEvent *event);5 总结 1 事件机制 事件传递图: 记录一下事件的传递顺序,主要围绕 QEventFilter, QEvent, QKeyEvent等事件展开&#xff1a…

N-142基于springboot,vue停车场管理系统

开发工具:IDEA 服务器:Tomcat9.0, jdk1.8 项目构建:maven 数据库:mysql5.7 项目采用前后端分离 前端技术:vueelementUI 服务端技术:springbootmybatis-plus 本项目分为普通用户和管理员…

springboot156基于SpringBoot+Vue的常规应急物资管理系统

基于SpringBootVue的常规应急物资管理系统的设计与实现 摘 要 1 ABSTRACT 2 第一章 绪论 3 1.1研究背景 3 1.2研究意义 3 1.3国内外研究现状 4 1.3.1国外研究现状 4 1.3.2国内研究现状 4 1.4研究内容与方法 5 1.4.1研究内容 5 1.4.2研究方法 5 1.5论文的组织结构 5…

管理类联考-复试-英语-听力

文章目录 准备工作1.如何准备英语听力?2.听力学习注意事项一:培养良好的听音习惯,听读顺序要合理3.听力学习注意事项二:边听边记关键词 训练短期记忆能力4.听力学习注意事项三:熟记语篇衔接词把握信息走向5.听力学习注…

Tribon二次开发-tbsetenv.exe和tbunsetenv.exe

通过DOS窗口,输入命令可以添加或删除Tribon环境变量,帮助文档如下: 添加Tribon环境变量 删除环境变量 一般在第三方程序与Tribon交互会用到这种方法,通过调用CMD,输入命令,并将界面隐藏