RT-Thread 互补滤波器 (STM32 + 6 轴 IMU)

作者:wuhanstudio

原文链接:https://zhuanlan.zhihu.com/p/611568999

最近在看无人驾驶的 Prediction 部分,可以利用 EKF (Extended Kalman Filter) 融合不同传感器的数据,例如 IMU, Lidar 和 GNSS,从而给出更加准确的状态预测。

刚好手边开发板有一个 6 轴的 IMU,本来打算试一下 卡尔曼滤波器 (Kalman Filter),然而 Kalman Filter 更适合 9 轴的传感器,也就是在 6 轴的基础上(3-axis Accel + 3-axis Gyro)融合 3 轴的磁力计。

对于一个只有 6 轴 IMU 的 MCU,轻量级的 互补滤波器 (Complementary Filter) 更加合适,利用 3 轴陀螺仪和 3 轴加速度计来估计开发板的姿态 (Pitch, Roll, Yaw)。

13865c9bda9395c923ea10c3b757bb01.jpeg

大致流程:首先用 RT-Thread 的 icm20608 软件包读取 陀螺仪 (Gyroscope) 和 加速度计 (Accelerometer) 的数据,分别计算出估计的角度,再用互补滤波器 (Complementary Filter) 融合两个角度估计、进行校正,其实核心算法的代码就 7 行。最后串口把数据发到电脑上,用 Python + OpenGL 可视化。

Github - STM32 IMU 互补滤波器 (RT-Thread):https://github.com/wuhanstudio/stm32-imu-filter

IMU 传感器 (Inertial Measurement Unit)

我们先介绍下从 I2C 总线读取出传感器原始数值后,如何处理得到加速度和旋转角速度。

一个六轴的 IMU 可以测量 x, y, z 三个方向的重力加速度,和绕三个轴的旋转角速度。比如,开发板如果静止放置在桌面上,会测量到 z 方向的重力加速度。

d1c63dd56bf445e2fc45e33da9e7ed79.png

三个轴的加速度

当然,如果开发板静止不动,绕三个轴的旋转速度都是 0。

509b4bc7a53f2bc2c9be099396dc9e90.png

三个轴的旋转角速度

由于传感器的输出实际上是来自 ADC 的 16 位数字信号,我们需要把它的单位转换成重力加速度 g。例如,我们可以选择测量范围

63900f633cc99d9cfe485b5adf550720.png

,默认是

d3921fbaff95fe7b11798cabab59cb36.png

,也就是把传感器的 16 位输出

f58d1ce39660866965496ae34728f2e1.png

映射到 [-2g, 2g),于是

601d06f5f62eef79b049a8f7d0a2b75e.png

也就是下面 icm20608 芯片手册的 Sensitivity Scale Factor。

0e8a1f66b74f27273b5aa91f05b978ad.jpeg

于是在代码里面,将原始的 int16 加速度数据除以 16384。

double aSensitivity = 16384;

accel_x = accel_x / aSensitivity;
accel_y = accel_y / aSensitivity;
accel_z = accel_z / aSensitivity;

同样,我们可以换算出角速度

f8837e8fc284ee7f2ac44adb0a14a680.png

06c521d8d372d375ebf702b36c55fd60.png

于是在代码里面,将原始的 int16 角速度数据除以 131。

double gSensitivity = 131;

gyrX = gyro_x / gSensitivity;
gyrY = gyro_y / gSensitivity;
gyrZ = gyro_z / gSensitivity;

这样我们就把 ADC 输出的 int16 原始数据分布转换成了加速度单位 g,和旋转角速度单位 °/s.

互补滤波器 (Complementary Filter)

我们可以用 互补滤波器 结合 加速度 和 旋转速度 的测量值,得到更准确的姿态预测。

我们使用下面的图中的坐标系,绕 x 轴旋转的角度为 roll,绕 y 轴的旋转方向为 pitch,绕 z 轴旋转方向为 yaw。逆时针旋转为正,顺时针旋转为负。

f399cb35f8b19b268faae6afc5444a09.png

陀螺仪估计姿态

陀螺仪测量的是瞬间的旋转角速度,所以位置的估计其实就是时间的积分。例如,每过 100ms 测量一次旋转速度,旋转速度 x 时间 = 旋转角度。

// angles based on gyro (deg/s)
gx = gx + gyrX * TIME_STEP_MS / 1000;
gy = gy + gyrY * TIME_STEP_MS / 1000;
gz = gz + gyrZ * TIME_STEP_MS / 1000;

当然,由于环境存在大量噪声,陀螺仪测量数据会存在随机的波动,这些噪声经过积分累积,最后会造成位置的漂移。

比如下面这张图,过了很长时间后,虽然开发板是静止的,但是右边的陀螺仪估计的位置,就无法回到原点,这就是长时间的累计误差造成的。

9177499db2bf396b4aedb3c407c3e97f.jpeg

加速度计估计姿态

加速度计不需要积分,我们可以直接对当前加速度角度求 arctan 得到角度:

55626cba01108feb7bff5480682a2b20.jpeg
// angles based on accelerometer
ax = atan2(accelY, accelZ) * 180 / M_PI;                                     // roll
ay = atan2(-accelX, sqrt( pow(accelY, 2) + pow(accelZ, 2))) * 180 / M_PI;    // pitch

不管我们的开发板绕 z 轴旋转多少度,重力加速度始终朝向地面。因此开发板静止状态,我们无法利用重力加速度知道 z 轴的旋转角度 (yaw),所以上面只计算 roll 和 pitch,最终 z 轴的旋转角度 yaw 会出现累计积分误差。

互补滤波器

我们需要结合2个测量值是因为:旋转速度短时间内比较准确,但是由于环境的噪声会产生一些随机运动,时间长了就会漂移,而加速度短时间内不一定准确,但是最终会维持稳定。

于是我们就可以取长补短,线性叠加2个测量值的估计,给出更准确的估计。

// complementary filter
gx = gx * 0.96 + ax * 0.04;
gy = gy * 0.96 + ay * 0.04;

短时间内,我们相信陀螺仪测量的旋转角速度 (权值: 0.96);长时间内,环境噪声逐渐造成的漂移,由加速度计慢慢进行矫正 (权值: 0.04)。

总结

最后总结一下,其实核心代码一共就 7 行。我们先利用加速度求解姿态,再利用旋转角速度求解姿态,最后用互补滤波器进行一个线性叠加。

// angles based on gyro (deg/s)
gx = gx + gyrX * TIME_STEP_MS / 1000;
gy = gy + gyrY * TIME_STEP_MS / 1000;
gz = gz + gyrZ * TIME_STEP_MS / 1000;

// angles based on accelerometer
ax = atan2(accelY, accelZ) * 180 / M_PI;                                     // roll
ay = atan2(-accelX, sqrt( pow(accelY, 2) + pow(accelZ, 2))) * 180 / M_PI;    // pitch

// complementary filter
gx = gx * 0.96 + ax * 0.04;
gy = gy * 0.96 + ay * 0.04;

References

  • https://github.com/mattzzw/Arduino-mpu6050

  • https://github.com/RT-Thread-pa




2ae1918154df369ffbd7ea24075ed408.gif

👇👇👇 点击阅读原文查看近期赛事

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/36928.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Go语言github.com/gorilla/websocket框架websocket协议通信实战

websocket是实际开发中比较常用的应用层协议,本文利用github.com/gorilla/websocket框架进行websocket通信实战。 目录 1.下载github.com/gorilla/websocket 2.websocket服务端 3.websocket Go客户端 4.websocket 网页客户端 5.运行结果展示 1.下载github.com…

Red Hat Subscription 开发者订阅与激活订阅

目录 前言 进入开发者页面 创建红帽账户 阅读Red Hat订阅; 激活订阅 查看订阅状态 前言 使用命令时会出现以提示,命令不可正常使用。 根据提示信息,我们可以知道,需要通过Red Hat Subscription,开发者订阅。 …

图像分类——图像增强方法

目录 常用的图像增强方法tf.image进行图像增强翻转和裁剪颜色变换 使用ImageDataGenerator(进行图像增强) 常用的图像增强方法 tf.image进行图像增强 离线实现 import tensorflow as tf import matplotlib.pyplot as plt import numpy as npcatplt.imread(./cat.jpg) plt.ims…

Scala中的集合

水善利万物而不争,处众人之所恶,故几于道💦 目录 一、集合简介 二、集合关系继承图 一、集合简介 Java中的集合: Scala中的集合: Scala的集合有三大类:序列Seq、集Set、映射Map,所有的集合…

单片机基于stm32单片机的数字温度计设计_kaic

摘 要 古往今来,陶瓷在我们的生活中一直都是不可或缺的物品,而随着当今社会经济的快速发展,人们对于这些高档陶瓷产品的使用性能和产品质量上的要求也愈加严格。那么在陶瓷品的生产过程中,想要提高陶瓷品的品质和合格率,能够随时监测温度的温度计是必不可少的。 本课题的研究是…

MySQL单表查询练习题

目录 第一题 第二题 第三题 第一题 1.创建数据表pet,并对表进行插入、更新与删除操作,pet表结构如表8.3所示。 (1)首先创建数据表pet,使用不同的方法将表8.4中的记录插入到pet表中。 mysql> create table pet( name varchar(…

IDEA+SpringBoot+mybatis+SSM+layui+Mysql客户管理系统源码

IDEASpringBootmybatisSSMlayuiMysql客户管理系统 一、系统介绍1.环境配置 二、系统展示1. 管理员登录2.修改密码3.客户管理4.添加客户5.充值记录管理6.消费记录管理7.客户类型8.添加客户类型 三、部分代码UserMapper.javaLoginController.javaUser.java 四、其他获取源码 一、…

【MQ】Windows上RabbitMQ的安装与启动

文章目录 下载Erlang安装RabbitMQ 下载Erlang RabbitMQ基于Erlang语言,因此使用RabbitMQ之前需要先安装Erlang,如下 Erlang语言下载 这里我是用的是25.2.2这个版本,我的机器是64bit的,所以下win64的即可。 下载完毕安装包之后点…

List移除元素的四种方式

List 移除某个元素 四种方式: 方式一,使用 Iterator ,顺序向下,如果找到元素,则使用 remove 方法进行移除。方式二,倒序遍历 List ,如果找到元素,则使用 remove 方法进行移除。方式…

在Windows server 2012上使用virtualBox运行CentOS7虚拟机,被强制暂停

文章目录 问题场景排查过程处理解决事后反思 问题场景 我们的平台服务使用docker部署,使用docker-compose进行管理,部署到CentOS7的服务器里平台部署到客户环境时,一小部分客户,使用自己机房或单独的服务器。很多客户不愿意采购新…

【MySQL】SQL索引失效的几种场景及优化

MySQL中提高性能的一个最有效的方式是对数据表设计合理的索引。索引提供了高效访问数据的方法,并且加快查询的速度, 因此索引对查询的速度有着至关重要的影响。 使用索引可以快速地定位表中的某条记录,从而提高数据库查询的速度,…

【东南亚情报局】Lazada饰品商家如何做到8倍的增长率

用小小的商品挖呀挖呀挖,在东南亚的市场,种出大大的花~如何抓住东南亚消费者的心巴,踩中时尚节拍,本篇文章《东南亚情报局》一起看看饰品趋势都有哪些特征! 【1.指南篇】 Y2K:Y2K风格在亚洲迅速火爆起来,…

微信小程序精选,多样化的功能与便捷体验

白噪音Pro、魔术字体和天天倒计时,这三款微信小程序正越来越受到我们的欢迎。它们各自具有独特的功能和特点,为我们提供了多样化的体验。现在,让我们一起来详细介绍一下这三款小程序。 首先是白噪音Pro。随着生活节奏的加快和压力的增加&…

【图像处理】Python判断一张图像是否亮度过低

比如: 直方图: 代码: 这段代码是一个用于判断图像亮度是否过暗的函数is_dark,并对输入的图像进行可视化直方图展示。 首先,通过import语句导入了cv2和matplotlib.pyplot模块,用于图像处理和可视化。 i…

LeetCode 203. 移除链表元素

给你一个链表的头节点 head 和一个整数 val ,请你删除链表中所有满足 Node.val val 的节点,并返回 新的头节点 。 (1)直接使用原来的链表来进行移除节点操作: //不带头结点删除元素节点 class Solution { public:Lis…

【C语言督学营 第十八天】考研408排序大题初探(将排序思想融入题目)

文章目录 题目一分析代码实战 题目二分析代码实战 补充(快排与归并)数据结构大题注意点!!!(评分标准) 题目一 分析 (1)算法的基本设计思想 由题意知,将最小的nl2个元素放在Ai中,其余的元素放在A2中&#x…

vue+elementui实现app布局小米商城,样式美观大方,功能完整

目录 一、项目效果在线预览 二、效果图 1.首页效果图 2.分类,动态分类商品数据根据所属分类动态切换 3.购物车,动态添加购物车(增、删、改、查) 4.我的 5.登录注册 6.商品详情 7.搜索(动态模糊搜索、搜索历史…

如何安装本地Go Tour教程(或者叫A Tour of Go离线版),以及中文版安装不了该怎么办

Go 官方是有一个在线教程 A Tour of Go,可以在线学习 Go 的编程,并且有中文版。英文原版页面如下: 出人意料的是,Go 提供了离线版(各个语言都有),下载安装之后就可以在本地编译运行查看结果&a…

阿里云AliYun物联网平台使用-设备添加以及模拟设备端上云

一、前言 上一篇文章提到,我们已经申请了免费的阿里云平台,下面需要将我们的设备在阿里云上进行注册和申请,以便于我们的数据上云。 二、步骤 注册产品(设备模型) 在产品页面,点击 "创建产品" 。…

Blender基础入门(2):Blender简单渲染

文章目录 我个人的Blender专栏前言渲染基本常识科普Blender渲染设置Blender窗口分栏分屏渲染 渲染设置GPU渲染引擎推荐最大采样 切换摄像机渲染图片渲染采样512和4096差异512采样4096采样 渲染建议 我个人的Blender专栏 Blender简单教学 前言 渲染是从白模到成品的过程&…