使用Pytorch加载预训练模型及修改网络结构

Pytorch有自带的训练好的AlexNet、VGG、ResNet等网络架构。详见官网

1.加载预训练模型

import torch
import torchvision
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torchvision.transforms as transforms
import torchvision.models as models
from torchsummary import summary

#加载预训练的AlexNet,设置参数为pretrained=True即可
#如果只需要AlexNet的网络结构,设置参数为pretrained=False
model=models.alexnet(pretrained=True)

#因为summary默认在cuda上加载模型所以要把模型加载到GPU上
model.to("cuda")
summary(model,(3,227,227))

#如果没有GPU,直接输入
summary(model,(3,227,227),device="cpu")

用summary输出网络结构如下:

在这里插入图片描述

2.增加、更改某些层

print(model)
#输出如下
"""
AlexNet(
  (features): Sequential(
    (0): Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2))
    (1): ReLU(inplace=True)
    (2): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
    (3): Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (4): ReLU(inplace=True)
    (5): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
    (6): Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (7): ReLU(inplace=True)
    (8): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (9): ReLU(inplace=True)
    (10): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (11): ReLU(inplace=True)
    (12): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (avgpool): AdaptiveAvgPool2d(output_size=(6, 6))
  (classifier): Sequential(
    (0): Dropout(p=0.5, inplace=False)
    (1): Linear(in_features=9216, out_features=4096, bias=True)
    (2): ReLU(inplace=True)
    (3): Dropout(p=0.5, inplace=False)
    (4): Linear(in_features=4096, out_features=4096, bias=True)
    (5): ReLU(inplace=True)
    (6): Linear(in_features=4096, out_features=1000, bias=True)
  )
)"""

可以看到,AlexNet有三个层,分别是features、avgpool、classifier。用model.features查看features层(也就是卷积层)的网络结构。

model.features
#输出
"""
Sequential(
  (0): Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2))
  (1): ReLU(inplace=True)
  (2): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
  (3): Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
  (4): ReLU(inplace=True)
  (5): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
  (6): Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (7): ReLU(inplace=True)
  (8): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (9): ReLU(inplace=True)
  (10): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (11): ReLU(inplace=True)
  (12): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
)
"""
#如果我们要在features最后加上一层全连接层,名字叫fc
model.features.add_module("fc",nn.Linear(120,20))
print(model)
#可以看到多了一个fc的全连接层
"""
Sequential(
  (0): Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2))
  (1): ReLU(inplace=True)
  (2): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
  (3): Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
  (4): ReLU(inplace=True)
  (5): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
  (6): Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (7): ReLU(inplace=True)
  (8): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (9): ReLU(inplace=True)
  (10): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (11): ReLU(inplace=True)
  (12): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
  (fc): Linear(in_features=120, out_features=20, bias=True)
)
"""
#如果要修改卷积层的卷积核大小,修改成7*7
model.features[0]=nn.Conv2d(3, 64, kernel_size=(7, 7), stride=(4, 4), padding=(2, 2))
model
#第一层的卷积核大小已经改变,例如修改model.features[-1]即可修改最后一层
"""
(features): Sequential(
    (0): Conv2d(3, 64, kernel_size=(7, 7), stride=(4, 4), padding=(2, 2))
    (1): ReLU(inplace=True)
    (2): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
    (3): Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (4): ReLU(inplace=True)
    (5): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
    (6): Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (7): ReLU(inplace=True)
    (8): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (9): ReLU(inplace=True)
    (10): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (11): ReLU(inplace=True)
    (12): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
    (fc): Linear(in_features=120, out_features=20, bias=True)
  )
"""

3.冻结层(取消梯度反向传播)

# 方式一:冻结所有 features 层
for name,layer in model.named_children():
    if name == "features":
#     print(name,layer)
        for param in layer.parameters():
            param.requires_grad=False

# 方式二: 冻结所有层(包括features层和classifier层)
    for param in model.parameters():
        param.requires_grad = False
        
for name,layer in model.named_parameters():
#      for param in layer:
    print("%s层未冻结 %s"%(name,layer.requires_grad))

#可以看到features这一层的梯度都是False,不会进行反向传播。classiofier的梯度都是True。

"""
features.0.weight层未冻结 False
features.0.bias层未冻结 False
features.3.weight层未冻结 False
features.3.bias层未冻结 False
features.6.weight层未冻结 False
features.6.bias层未冻结 False
features.8.weight层未冻结 False
features.8.bias层未冻结 False
features.10.weight层未冻结 False
features.10.bias层未冻结 False
features.fc.weight层未冻结 False
features.fc.bias层未冻结 False
classifier.1.weight层未冻结 True
classifier.1.bias层未冻结 True
classifier.4.weight层未冻结 True
classifier.4.bias层未冻结 True
classifier.6.weight层未冻结 True
classifier.6.bias层未冻结 True
"""

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/36420.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【QQ好友列表-设置HeaderView Objective-C语言】

一、咱们一起来看 刚才咱们是不是给大家说到 创建好模型了 是不是单元格,我们需要自定义单元格了 自定义单元格的步骤: 我相信大家现在脑子里,应该有那个代码的思路了吧 1)首先,是不是要新建一个类型啊 这个类型应该建在哪个里面 是不是应该建在我们的View里面 View…

linux常见指令下

接下来我们就聊聊linux的后面十条指令。 一:echo 作用是往显示器输出内容,和printf类型,但是该指令最核心的是与之相关的一些概念 概念1.输出重定向: echo不仅可以向显示打印内容,还可以向文件输出内容,本应该输出到…

图片视频抹除算法总结Inpaint

基本是从图片抹水印和视频抹水印两个方向 Video Inpainting:https://paperswithcode.com/task/video-inpaintingImage Inpainting:https://paperswithcode.com/task/image-inpainting 请根据目录查看 图片 Partial Conv 部分卷积层 源自于Image In…

人工智能时代如何加强网络安全

人工智能正在为软件开发人员赋予以前被认为难以想象的新能力。新的生成式人工智能可以提供复杂、功能齐全的应用程序、调试代码或使用简单的自然语言提示添加内嵌注释。 它已准备好以指数方式推进低代码自动化。但与此同时,新一代人工智能可能会为不良行为者提供帮…

vue中控制element表格列的显示与隐藏

背景 根据‘执行进度计算方式’的单选框里面的选项不同&#xff0c;展示不同的column 按最小制剂单位统计: 按含量统计: 实现方式 就是拿到选项框里面的值&#xff0c;再根据里面的值来判断哪些column显示和隐藏&#xff1b;关于显示和隐藏可以设置变量&#xff1b; <…

比对Excel数据

以a个为准绳比对b表数据&#xff0c;添加比对结果列输出。 (本笔记适合初通 Python 的 coder 翻阅) 【学习的细节是欢悦的历程】 Python 官网&#xff1a;https://www.python.org/ Free&#xff1a;大咖免费“圣经”教程《 python 完全自学教程》&#xff0c;不仅仅是基础那么…

训练自己的ChatGPT 语言模型(一).md

0x00 Background 为什么研究这个&#xff1f; ChatGPT在国内外都受到了广泛关注&#xff0c;很多高校、研究机构和企业都计划推出类似的模型。然而&#xff0c;ChatGPT并没有开源&#xff0c;且复现难度非常大&#xff0c;即使到现在&#xff0c;没有任何单位或企业能够完全复…

【内控版】BLM 战略方法论:战略意图篇

目录 介绍 战略意图 专栏列表 详细内容 配图 介绍 欢迎大家继续来到华为战略方法论的系列内容。 今天就来讲讲 BLM 模型中的战略意图篇。 战略意图在 BLM 模型中的位置,大家可以看这张图。 战略意图</

Redis 主从复制 哨兵 集群

Redis 主从复制 哨兵 集群 一、Redis 主从复制1.1 Redis 主从复制介绍1.2 主从复制的作用1.3 主从复制的流程 二、搭建Redis 主从复制2.1 安装 Redis2.2 创建redis工作目录2.3 环境变量2.4 定义systemd服务管理脚本2.5 修改 Redis 配置文件&#xff08;Master节点操作&#xff…

基于TF-IDF+Tensorflow+PyQt+孪生神经网络的智能聊天机器人(深度学习)含全部Python工程源码及模型+训练数据集

目录 前言总体设计系统整体结构图系统流程图孪生神经网络结构图 运行环境Python 环境TensorFlow 环境 模块实现1. 数据预处理2. 创建模型并编译3. 模型训练及保存4. 模型应用 系统测试1. 训练准确率2. 测试效果3. 模型生成 工程源代码下载其它资料下载 前言 本项目利用TF-IDF&…

Microsoft Remote Desktop for mac安装教程

适用于Mac的Microsoft远程桌面测试版&#xff01;Microsoft Remote Desktop Beta for Mac是一种远程工具&#xff0c;允许用户从Mac远程访问基于Windows的计算机。使用此工具&#xff0c;用户可以随时随地使用Mac连接到远程桌面、应用程序和资源。 Microsoft Remote Desktop B…

【玩转Linux操作】一文带你明白Shell的判断,循环语句

&#x1f38a;专栏【玩转Linux操作】 &#x1f354;喜欢的诗句&#xff1a;更喜岷山千里雪 三军过后尽开颜。 &#x1f386;音乐分享【如愿】 大一同学小吉&#xff0c;欢迎并且感谢大家指出我的问题&#x1f970; 文章目录 &#x1f354;判断语句⭐单层if&#x1f388;示例 ⭐…

【python】制作一个串口工具(下)!

上一章节我们说了UI界面的设计&#xff0c;这一节来说下怎样实现其功能。 一.实例演示 1.创建一个.py文件&#xff0c;以下代码用来实现获取所有的串口信息&#xff1a; import serial import serial.tools.list_portsfrom PyQt5.QtWidgets import QComboBoxclass My_ComBoBo…

signed char 与 unsigned char 的取值范围

&#x1f517; 《C语言趣味教程》&#x1f448; 猛戳订阅&#xff01;&#xff01;&#xff01; 【C语言趣味教程】(2) 整数类型 | 数据类型的概念 | 原码反码与补码 | 有符号型和无符类型 | 研究 signed char 与 unsigned char 的取值范围 ​—— 热门专栏《维生素C语言》的重…

小程序页面顶部标题栏、导航栏navigationBar如何隐藏、变透明?

在app.json中的 "window"下面追加一行 "navigationStyle": "custom" 小程序顶部的白色背景条就不见了&#xff0c;直接变透明&#xff0c;只剩下右上角的胶囊按钮 警告&#xff1a; 如果页面有 <web-view src"{{src}}" /> …

【网络原理】TCP连接管理机制(三次握手四次挥手)

&#x1f94a;作者&#xff1a;一只爱打拳的程序猿&#xff0c;Java领域新星创作者&#xff0c;CSDN、阿里云社区优质创作者。 &#x1f93c;专栏收录于&#xff1a;计算机网络原理 在使用TCP协议进行网络交互时&#xff0c;TCP会进行三次握手即建立连接&#xff0c;TCP四次挥手…

密码学学习笔记(八):Public-Key Encryption - 公钥加密1

简介 公钥加密也被称为非对称加密。下面是一个例子&#xff1a; Bob生成一个密钥对&#xff0c;发布他的公钥&#x1d443;&#x1d43e;&#x1d435;, 保管密钥&#x1d446;&#x1d43e;&#x1d435; 私有的Alice使用&#x1d443;&#x1d43e;&#x1d435; 加密明文M…

TypeScript - 函数(下)

目录 1、在函数中声明this 2、其他需要知道的类型 2.1 void 2.2 object 2.3 unknow 2.4 never 2.5 Function 3、其余参数&#xff08;rest&#xff09;和参数 4、参数解构 5、函数的可分配性 1、在函数中声明this TypeScript 将通过代码流分析推断函数中应该是什么&…

安卓JNI从0到1入门教程(二)

经过上一篇《安卓JNI从0到1入门教程&#xff08;一&#xff09;》介绍&#xff0c;我们对JNI有了初步认识&#xff0c;接下来我会从ndk-build方式和cmake方式分别来介绍怎么构建native库&#xff1a; 一、ndk-build ndk-build依赖配置文件Android.mk&#xff0c;存放代码的位…

AI PPT 一句话搞定PPT讲演搞

相信大家在职场中&#xff0c;一定会接触过写PPT&#xff0c;经常会把你搞得焦头烂额。在大部分的公司里&#xff0c;写PPT汇报又是不可能逃避的事情。但随着AI时代的到来&#xff0c;有很多AI帮你写PPT的工具也逐渐崭露头角&#xff0c;可以自动帮助你制作出华丽的PPT&#xf…