Redis 主从复制 哨兵 集群

Redis 主从复制 哨兵 集群

  • 一、Redis 主从复制
    • 1.1 Redis 主从复制介绍
    • 1.2 主从复制的作用
    • 1.3 主从复制的流程
  • 二、搭建Redis 主从复制
    • 2.1 安装 Redis
    • 2.2 创建redis工作目录
    • 2.3 环境变量
    • 2.4 定义systemd服务管理脚本
    • 2.5 修改 Redis 配置文件(Master节点操作)
    • 2.6 修改 Redis 配置文件(Slave节点操作)
    • 2.7 验证主从效果
  • 三、Redis 哨兵模式
    • 3.1 何为哨兵模式
    • 3.2 哨兵模式的作用
    • 3.3 哨兵结构由两部分组成,哨兵节点和数据节点
    • 3.4 故障转移机制
    • 3.5 主节点的选举
  • 四、搭建Redis 哨兵模式
    • 4.1 修改 Redis 哨兵模式的配置文件(所有节点操作)
    • 4.2 启动哨兵模式
    • 4.3 查看哨兵信息
    • 4.4 故障模拟
    • 4.5 验证结果
  • 五、Redis 群集模式
    • 5.1 Redis 群集
    • 5.2 集群的作用
    • 5.3 Redis集群的数据分片
    • 5.4 Redis集群的主从复制模型
  • 六、搭建Redis 群集模式
    • 6.1 开启群集功能
    • 6.2 启动redis节点
    • 6.3 启动集群
    • 6.4 测试群集

一、Redis 主从复制

1.1 Redis 主从复制介绍

  • 主从复制,是指将一台Redis服务器的数据,复制到其他的Redis服务器。前者称为主节点(Master),后者称为从节点(Slave);数据的复制是单向的,只能由主节点到从节点。
  • 默认情况下,每台Redis服务器都是主节点;且一个主节点可以有多个从节点(或没有从节点),但一个从节点只能有一个主节点。

1、主从复制:主从复制是高可用Redis的基础,哨兵和集群都是在主从复制基础上实现高可用的。主从复制主要实现了数据的多机备份,以及对于读操作的负载均衡和简单的故障恢复。缺陷:故障恢复无法自动化;写操作无法负载均衡;存储能力受到单机的限制。
2、哨兵:在主从复制的基础上,哨兵实现了自动化的故障恢复。缺陷:写操作无法负载均衡;存储能力受到单机的限制;哨兵无法对从节点进行自动故障转移,在读写分离场景下,从节点故障会导致读服务不可用,需要对从节点做额外的监控、切换操作。
3、集群:通过集群,Redis解决了写操作无法负载均衡,以及存储能力受到单机限制的问题,实现了较为完善的高可用方案。

1.2 主从复制的作用

1、数据冗余:主从复制实现了数据的热备份,是持久化之外的一种数据冗余方式。
2、故障恢复:当主节点出现问题时,可以由从节点提供服务,实现快速的故障恢复;实际上是一种服务的冗余。
3、负载均衡:在主从复制的基础上,配合读写分离,可以由主节点提供写服务,由从节点提供读服务(即写Redis数据时应用连接主节点,读Redis数据时应用连接从节点),分担服务器负载;尤其是在写少读多的场景下,通过多个从节点分担读负载,可以大大提高Redis服务器的并发量。
4、高可用基石:除了上述作用以外,主从复制还是哨兵和集群能够实施的基础,因此说主从复制是Redis高可用的基础。

1.3 主从复制的流程

1、若启动一个Slave机器进程,则它会向Master机器发送一个“sync command”命令,请求同步连接。
2、无论是第一次连接还是重新连接,Master机器都会启动一个后台进程,将数据快照保存到数据文件中(执行rdb操作),同时Master还会记录修改数据的所有命令并缓存在数据文件中。
3、后台进程完成缓存操作之后,Master机器就会向Slave机器发送数据文件,Slave端机器将数据文件保存到硬盘上,然后将其加载到内存中,接着Master机器就会将修改数据的所有操作一并发送给Slave端机器。若Slave出现故障导致宕机,则恢复正常后会自动重新连接。
4、Master机器收到Slave端机器的连接后,将其完整的数据文件发送给Slave端机器,如果Master同时收到多个Slave发来的同步请求,则Master会在后台启动一个进程以保存数据文件,然后将其发送给所有的Slave端机器,确保所有的Slave端机器都正常。

二、搭建Redis 主从复制

Master节点:192.168.80.10
Slave1节点:192.168.80.11
Slave2节点:192.168.80.12

2.1 安装 Redis

//环境准备
systemctl stop firewalld
systemctl disable firewalld
setenforce 0
sed -i 's/enforcing/disabled/' /etc/selinux/config

#修改内核参数
vim /etc/sysctl.conf
vm.overcommit_memory = 1
net.core.somaxconn = 2048

sysctl -p


//安装redis
yum install -y gcc gcc-c++ make

tar zxvf /opt/redis-7.0.9.tar.gz -C /opt/
cd /opt/redis-7.0.9
make
make PREFIX=/usr/local/redis install
#由于Redis源码包中直接提供了 Makefile 文件,所以在解压完软件包后,不用先执行 ./configure 进行配置,可直接执行 make 与 make install 命令进行安装。

2.2 创建redis工作目录

mkdir /usr/local/redis/{conf,log,data}

cp /opt/redis-7.0.9/redis.conf /usr/local/redis/conf/

useradd -M -s /sbin/nologin redis
chown -R redis.redis /usr/local/redis/

2.3 环境变量

vim /etc/profile 
PATH=$PATH:/usr/local/redis/bin		#增加一行

source /etc/profile

2.4 定义systemd服务管理脚本

vim /usr/lib/systemd/system/redis-server.service
[Unit]
Description=Redis Server
After=network.target

[Service]
User=redis
Group=redis
Type=forking
TimeoutSec=0
PIDFile=/usr/local/redis/log/redis_6379.pid
ExecStart=/usr/local/redis/bin/redis-server /usr/local/redis/conf/redis.conf
ExecReload=/bin/kill -s HUP $MAINPID
ExecStop=/bin/kill -s QUIT $MAINPID
PrivateTmp=true

[Install]
WantedBy=multi-user.target

2.5 修改 Redis 配置文件(Master节点操作)

vim /usr/local/redis/conf/redis.conf
bind 0.0.0.0									#87行,修改监听地址为0.0.0.0
protected-mode no								#111行,将本机访问保护模式设置no
port 6379										#138行,Redis默认的监听6379端口
daemonize yes									#309行,设置为守护进程,后台启动
pidfile /usr/local/redis/log/redis_6379.pid		#341行,指定 PID 文件
logfile "/usr/local/redis/log/redis_6379.log"	#354行,指定日志文件
dir /usr/local/redis/data						#504行,指定持久化文件所在目录
#requirepass abc123								#1037行,可选,设置redis密码
appendonly yes									#1380行,开启AOF


systemctl restart redis-server.service

2.6 修改 Redis 配置文件(Slave节点操作)

vim /usr/local/redis/conf/redis.conf
bind 0.0.0.0									#87行,修改监听地址为0.0.0.0
protected-mode no								#111行,将本机访问保护模式设置no
port 6379										#138行,Redis默认的监听6379端口
daemonize yes									#309行,设置为守护进程,后台启动
pidfile /usr/local/redis/log/redis_6379.pid		#341行,指定 PID 文件
logfile "/usr/local/redis/log/redis_6379.log"	#354行,指定日志文件
dir /usr/local/redis/data						#504行,指定持久化文件所在目录
#requirepass abc123								#1037行,可选,设置redis密码
appendonly yes									#1380行,开启AOF
replicaof 192.168.80.10 6379					#528行,指定要同步的Master节点IP和端口
#masterauth abc123								#535行,可选,指定Master节点的密码,仅在Master节点设置了requirepass


systemctl restart redis-server.service

2.7 验证主从效果

在Master节点上看日志:
tail -f /usr/local/redis/log/redis_6379.log 
Replica 192.168.80.11:6379 asks for synchronization
Replica 192.168.80.12:6379 asks for synchronization
Synchronization with replica 192.168.80.11:6379 succeeded
Synchronization with replica 192.168.80.12:6379 succeeded

在Master节点上验证从节点:
redis-cli info replication
# Replication
role:master
connected_slaves:2
slave0:ip=192.168.80.11,port=6379,state=online,offset=1246,lag=0
slave1:ip=192.168.80.12,port=6379,state=online,offset=1246,lag=1

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

三、Redis 哨兵模式

3.1 何为哨兵模式

  • 主从切换技术的方法是:当服务器宕机后,需要手动一台从机切换为主机,这需要人工干预,不仅费时费力而且还会造成一段时间内服务不可用。为了解决主从复制的缺点,就有了哨兵机制。

  • 哨兵的核心功能:在主从复制的基础上,哨兵引入了主节点的自动故障转移。

3.2 哨兵模式的作用

1、监控:哨兵会不断地检查主节点和从节点是否运作正常。

2、自动故障转移:当主节点不能正常工作时,哨兵会开始自动故障转移操作,它会将失效主节点的其中一个从节点升级为新的主节点,并让其它从节点改为复制新的主节点。

3、通知(提醒):哨兵可以将故障转移的结果发送给客户端。

3.3 哨兵结构由两部分组成,哨兵节点和数据节点

1、哨兵节点:哨兵系统由一个或多个哨兵节点组成,哨兵节点是特殊的redis节点,不存储数据。
2、数据节点:主节点和从节点都是数据节点。

3.4 故障转移机制

1、每个哨兵节点每隔1秒会向主节点、从节点及其它哨兵节点发送一次ping命令做一次心跳检测。如果主节点在一定时间范围内不回复或者是回复一个错误消息,那么这个哨兵就会认为这个主节点主观下线了(单方面的)。当超过半数哨兵节点认为该主节点主观下线了,这样就客观下线了。

2、当主节点出现故障,此时哨兵节点会通过Raft算法(选举算法)实现选举机制共同选举出一个哨兵节点为leader,来负责处理主节点的故障转移和通知。所以整个运行哨兵的集群的数量不得少于3个节点。

3、由leader哨兵节点执行故障转移,过程如下:
(1)将某一个从节点升级为新的主节点,让其它从节点指向新的主节点;
(2)若原主节点恢复也变成从节点,并指向新的主节点;
(3)通知客户端主节点已经更换。

需要特别注意的是,客观下线是主节点才有的概念;如果从节点和哨兵节点发生故障,被哨兵主观下线后,不会再有后续的客观下线和故障转移操作。

3.5 主节点的选举

1.过滤掉不健康的(已下线的),没有回复哨兵 ping 响应的从节点。
2.选择配置文件中从节点优先级配置最高的。(replica-priority,默认值为100)
3.选择复制偏移量最大,也就是复制最完整的从节点。

哨兵的启动依赖于主从模式,所以须把主从模式安装好的情况下再去做哨兵模式

四、搭建Redis 哨兵模式

Master节点:192.168.80.10
Slave1节点:192.168.80.11
Slave2节点:192.168.80.12

systemctl stop firewalld
setenforce 0

4.1 修改 Redis 哨兵模式的配置文件(所有节点操作)

cp /opt/redis-7.0.9/sentinel.conf /usr/local/redis/conf/
chown redis.redis /usr/local/redis/conf/sentinel.conf

vim /usr/local/redis/conf/sentinel.conf
protected-mode no									#6行,关闭保护模式
port 26379											#10行,Redis哨兵默认的监听端口
daemonize yes										#15行,指定sentinel为后台启动
pidfile /usr/local/redis/log/redis-sentinel.pid		#20行,指定 PID 文件
logfile "/usr/local/redis/log/sentinel.log"			#25行,指定日志存放路径
dir /usr/local/redis/data							#54行,指定数据库存放路径
sentinel monitor mymaster 192.168.80.10 6379 2		#73行,修改 指定该哨兵节点监控192.168.80.10:6379这个主节点,该主节点的名称是mymaster,最后的2的含义与主节点的故障判定有关:至少需要2个哨兵节点同意,才能判定主节点故障并进行故障转移
#sentinel auth-pass mymaster abc123					#76行,可选,指定Master节点的密码,仅在Master节点设置了requirepass
sentinel down-after-milliseconds mymaster 3000		#114行,判定服务器down掉的时间周期,默认30000毫秒(30秒)
sentinel failover-timeout mymaster 180000			#214行,同一个sentinel对同一个master两次failover之间的间隔时间(180秒)

4.2 启动哨兵模式

先启master,再启slave
cd /usr/local/redis/conf/
redis-sentinel sentinel.conf &

4.3 查看哨兵信息

redis-cli -p 26379 info Sentinel
# Sentinel
sentinel_masters:1
sentinel_tilt:0
sentinel_running_scripts:0
sentinel_scripts_queue_length:0
sentinel_simulate_failure_flags:0
master0:name=mymaster,status=ok,address=192.168.80.10:6379,slaves=2,sentinels=3

4.4 故障模拟

#查看redis-server进程号:
ps -ef | grep redis
root      57031      1  0 15:20 ?        00:00:07 /usr/local/bin/redis-server 0.0.0.0:6379
root      57742      1  1 16:05 ?        00:00:07 redis-sentinel *:26379 [sentinel]
root      57883  57462  0 16:17 pts/1    00:00:00 grep --color=auto redis

#杀死 Master 节点上redis-server的进程号
kill -9 57031			#Master节点上redis-server的进程号

4.5 验证结果

tail -f /usr/local/redis/log/sentinel.log
6709:X 13 Mar 2023 12:27:29.517 # +sdown master mymaster 192.168.80.10 6379
6709:X 13 Mar 2023 12:27:29.594 * Sentinel new configuration saved on disk
6709:X 13 Mar 2023 12:27:29.594 # +new-epoch 1
6709:X 13 Mar 2023 12:27:29.595 * Sentinel new configuration saved on disk
6709:X 13 Mar 2023 12:27:29.595 # +vote-for-leader c64fac46fcd98350006900c330998364d6af635d 1
6709:X 13 Mar 2023 12:27:29.620 # +odown master mymaster 192.168.80.10 6379 #quorum 2/2
6709:X 13 Mar 2023 12:27:29.621 # Next failover delay: I will not start a failover before Mon Mar 13 12:33:30 2023
6709:X 13 Mar 2023 12:27:30.378 # +config-update-from sentinel c64fac46fcd98350006900c330998364d6af635d 192.168.80.11 26379 @ mymaster 192.168.80.10 6379
6709:X 13 Mar 2023 12:27:30.378 # +switch-master mymaster 192.168.80.10 6379 192.168.80.11 6379
6709:X 13 Mar 2023 12:27:30.378 * +slave slave 192.168.80.13:6379 192.168.80.13 6379 @ mymaster 192.168.80.11 6379
6709:X 13 Mar 2023 12:27:30.378 * +slave slave 192.168.80.10:6379 192.168.80.10 6379 @ mymaster 192.168.80.11 6379
6709:X 13 Mar 2023 12:27:30.381 * Sentinel new configuration saved on disk
6709:X 13 Mar 2023 12:27:33.379 # +sdown slave 192.168.80.10:6379 192.168.80.10 6379 @ mymaster 192.168.80.11 6379


2.redis-cli -p 26379 INFO Sentinel
# Sentinel
sentinel_masters:1
sentinel_tilt:0
sentinel_tilt_since_seconds:-1
sentinel_running_scripts:0
sentinel_scripts_queue_length:0
sentinel_simulate_failure_flags:0
master0:name=mymaster,status=ok,address=192.168.80.11:6379,slaves=2,sentinels=3

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

五、Redis 群集模式

5.1 Redis 群集

  • 集群,即Redis Cluster,是Redis 3.0开始引入的分布式存储方案。

  • 集群由多组节点(Node)组成,Redis的数据分布在这些节点中。集群中的节点分为主节点和从节点:只有主节点负责读写请求和集群信息的维护;从节点只进行主节点数据和状态信息的复制。

5.2 集群的作用

1、数据分区:数据分区(或称数据分片)是集群最核心的功能。
集群将数据分散到多个节点,一方面突破了Redis单机内存大小的限制,存储容量大大增加;另一方面每个主节点都可以对外提供读服务和写服务,大大提高了集群的响应能力。
Redis单机内存大小受限问题,在介绍持久化和主从复制时都有提及;例如,如果单机内存太大,bgsave和bgrewriteaof的fork操作可能导致主进程阻塞,主从环境下主机切换时可能导致从节点长时间无法提供服务,全量复制阶段主节点的复制缓冲区可能溢出。
2、高可用:集群支持主从复制和主节点的自动故障转移(与哨兵类似);当任一节点发生故障时,集群仍然可以对外提供服务。

5.3 Redis集群的数据分片

1、Redis集群引入了哈希槽的概念
2、Redis集群有16384个哈希槽(编号0-16383)
3、集群的每组节点负责一部分哈希槽
4、每个Key通过CRC16校验后对16384取余来决定放置哪个哈希槽,通过这个值,去找到对应的插槽所对应的节点,然后直接自动跳转到这个对应的节点上进行存取操作

  • 以3个节点组成的集群为例:
    节点A包含0到5460号哈希槽
    节点B包含5461到10922号哈希槽
    节点C包含10923到16383号哈希槽
    redis-cluster集群会用crc16算法对键进行换算,之后会得到一个数字,在用这个数字除以16384取余数,余数对应的Hash槽数值在哪个节点范围内,那么客户端输入的命令就会在哪个节点进行处理

5.4 Redis集群的主从复制模型

  • 集群中具有A、B、C三个节点,如果节点B失败了,整个集群就会因缺少5461-10922这个范围的槽而不可以用。
  • 为每个节点添加一个从节点A1、B1、C1整个集群便有三个Master节点和三个slave节点组成,在节点B失败后,集群选举B1位为的主节点继续服务。当B和B1都失败后,集群将不可用。

六、搭建Redis 群集模式

redis的集群一般需要6个节点,3主3从。方便起见,这里所有节点在同一台服务器上模拟:
以端口号进行区分:3个主节点端口号:6001/6002/6003,对应的从节点端口号:6004/6005/6006。
cd /usr/local/redis/
mkdir -p redis-cluster/redis600{1..6}

for i in {1..6}
do
cp /opt/redis-7.0.9/redis.conf /usr/local/redis/redis-cluster/redis600$i
cp /opt/redis-7.0.9/src/redis-cli /opt/redis-7.0.9/src/redis-server /usr/local/redis/redis-cluster/redis600$i
done

6.1 开启群集功能

#其他5个文件夹的配置文件以此类推修改,注意6个端口都要不一样。
cd /usr/local/redis/redis-cluster/redis6001
vim redis.conf
#bind 127.0.0.1									#87行,注释掉bind项,默认监听所有网卡
protected-mode no								#111行,关闭保护模式
port 6001										#138行,修改redis监听端口
daemonize yes									#309行,设置为守护进程,后台启动
pidfile /usr/local/redis/log/redis_6001.pid		#341行,指定 PID 文件
logfile "/usr/local/redis/log/redis_6001.log"	#354行,指定日志文件
dir ./											#504行,指定持久化文件所在目录
appendonly yes									#1379行,开启AOF
cluster-enabled yes								#1576行,取消注释,开启群集功能
cluster-config-file nodes-6001.conf				#1584行,取消注释,群集名称文件设置
cluster-node-timeout 15000						#1590行,取消注释群集超时时间设置

6.2 启动redis节点

分别进入那六个文件夹,执行命令:redis-server redis.conf ,来启动redis节点
cd /usr/local/redis/redis-cluster/redis6001
redis-server redis.conf

for d in {1..6}
do
cd /usr/local/redis/redis-cluster/redis600$d
./redis-server redis.conf
done

ps -ef | grep redis

6.3 启动集群

redis-cli --cluster create 127.0.0.1:6001 127.0.0.1:6002 127.0.0.1:6003 127.0.0.1:6004 127.0.0.1:6005 127.0.0.1:6006 --cluster-replicas 1
#六个实例分为三组,每组一主一从,前面的做主节点,后面的做从节点。下面交互的时候 需要输入 yes 才可以创建。
--replicas 1 表示每个主节点有1个从节点。

6.4 测试群集

redis-cli -p 6001 -c					#加-c参数,节点之间就可以互相跳转
127.0.0.1:6001> cluster slots			#查看节点的哈希槽编号范围
1) 1) (integer) 5461
   2) (integer) 10922									#哈希槽编号范围
   3) 1) "127.0.0.1"
      2) (integer) 6003									#主节点IP和端口号
      3) "fdca661922216dd69a63a7c9d3c4540cd6baef44"
   4) 1) "127.0.0.1"
      2) (integer) 6004									#从节点IP和端口号
      3) "a2c0c32aff0f38980accd2b63d6d952812e44740"
2) 1) (integer) 0
   2) (integer) 5460
   3) 1) "127.0.0.1"
      2) (integer) 6001
      3) "0e5873747a2e26bdc935bc76c2bafb19d0a54b11"
   4) 1) "127.0.0.1"
      2) (integer) 6006
      3) "8842ef5584a85005e135fd0ee59e5a0d67b0cf8e"
3) 1) (integer) 10923
   2) (integer) 16383
   3) 1) "127.0.0.1"
      2) (integer) 6002
      3) "816ddaa3d1469540b2ffbcaaf9aa867646846b30"
   4) 1) "127.0.0.1"
      2) (integer) 6005
      3) "f847077bfe6722466e96178ae8cbb09dc8b4d5eb"

127.0.0.1:6001> set name zhangsan
-> Redirected to slot [5798] located at 127.0.0.1:6003
OK

127.0.0.1:6001> cluster keyslot name					#查看name键的槽编号

redis-cli -p 6004 -c
127.0.0.1:6004> keys *							#对应的slave节点也有这条数据,但是别的节点没有
1) "name"


redis-cli -p 6001 -c cluster nodes

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/36405.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

基于TF-IDF+Tensorflow+PyQt+孪生神经网络的智能聊天机器人(深度学习)含全部Python工程源码及模型+训练数据集

目录 前言总体设计系统整体结构图系统流程图孪生神经网络结构图 运行环境Python 环境TensorFlow 环境 模块实现1. 数据预处理2. 创建模型并编译3. 模型训练及保存4. 模型应用 系统测试1. 训练准确率2. 测试效果3. 模型生成 工程源代码下载其它资料下载 前言 本项目利用TF-IDF&…

Microsoft Remote Desktop for mac安装教程

适用于Mac的Microsoft远程桌面测试版!Microsoft Remote Desktop Beta for Mac是一种远程工具,允许用户从Mac远程访问基于Windows的计算机。使用此工具,用户可以随时随地使用Mac连接到远程桌面、应用程序和资源。 Microsoft Remote Desktop B…

【玩转Linux操作】一文带你明白Shell的判断,循环语句

🎊专栏【玩转Linux操作】 🍔喜欢的诗句:更喜岷山千里雪 三军过后尽开颜。 🎆音乐分享【如愿】 大一同学小吉,欢迎并且感谢大家指出我的问题🥰 文章目录 🍔判断语句⭐单层if🎈示例 ⭐…

【python】制作一个串口工具(下)!

上一章节我们说了UI界面的设计,这一节来说下怎样实现其功能。 一.实例演示 1.创建一个.py文件,以下代码用来实现获取所有的串口信息: import serial import serial.tools.list_portsfrom PyQt5.QtWidgets import QComboBoxclass My_ComBoBo…

signed char 与 unsigned char 的取值范围

🔗 《C语言趣味教程》👈 猛戳订阅!!! 【C语言趣味教程】(2) 整数类型 | 数据类型的概念 | 原码反码与补码 | 有符号型和无符类型 | 研究 signed char 与 unsigned char 的取值范围 ​—— 热门专栏《维生素C语言》的重…

小程序页面顶部标题栏、导航栏navigationBar如何隐藏、变透明?

在app.json中的 "window"下面追加一行 "navigationStyle": "custom" 小程序顶部的白色背景条就不见了&#xff0c;直接变透明&#xff0c;只剩下右上角的胶囊按钮 警告&#xff1a; 如果页面有 <web-view src"{{src}}" /> …

【网络原理】TCP连接管理机制(三次握手四次挥手)

&#x1f94a;作者&#xff1a;一只爱打拳的程序猿&#xff0c;Java领域新星创作者&#xff0c;CSDN、阿里云社区优质创作者。 &#x1f93c;专栏收录于&#xff1a;计算机网络原理 在使用TCP协议进行网络交互时&#xff0c;TCP会进行三次握手即建立连接&#xff0c;TCP四次挥手…

密码学学习笔记(八):Public-Key Encryption - 公钥加密1

简介 公钥加密也被称为非对称加密。下面是一个例子&#xff1a; Bob生成一个密钥对&#xff0c;发布他的公钥&#x1d443;&#x1d43e;&#x1d435;, 保管密钥&#x1d446;&#x1d43e;&#x1d435; 私有的Alice使用&#x1d443;&#x1d43e;&#x1d435; 加密明文M…

TypeScript - 函数(下)

目录 1、在函数中声明this 2、其他需要知道的类型 2.1 void 2.2 object 2.3 unknow 2.4 never 2.5 Function 3、其余参数&#xff08;rest&#xff09;和参数 4、参数解构 5、函数的可分配性 1、在函数中声明this TypeScript 将通过代码流分析推断函数中应该是什么&…

安卓JNI从0到1入门教程(二)

经过上一篇《安卓JNI从0到1入门教程&#xff08;一&#xff09;》介绍&#xff0c;我们对JNI有了初步认识&#xff0c;接下来我会从ndk-build方式和cmake方式分别来介绍怎么构建native库&#xff1a; 一、ndk-build ndk-build依赖配置文件Android.mk&#xff0c;存放代码的位…

AI PPT 一句话搞定PPT讲演搞

相信大家在职场中&#xff0c;一定会接触过写PPT&#xff0c;经常会把你搞得焦头烂额。在大部分的公司里&#xff0c;写PPT汇报又是不可能逃避的事情。但随着AI时代的到来&#xff0c;有很多AI帮你写PPT的工具也逐渐崭露头角&#xff0c;可以自动帮助你制作出华丽的PPT&#xf…

docker部署rabbitmq 后访问管理首页常见问题

1.项目启动后 管理首页无法访问 1&#xff09;检查15672端口是否可以访问 2&#xff09;docker exec -it your_container_name /bin/bash 进入docker容器执行如下命令&#xff1a; 3) rabbitmq-plugins enable rabbitmq_management 2.访问首页时提示不是私密连接&#xff1a;…

自动化测试 selenium 篇

✏️作者&#xff1a;银河罐头 &#x1f4cb;系列专栏&#xff1a;JavaEE &#x1f332;“种一棵树最好的时间是十年前&#xff0c;其次是现在” 目录 什么是自动化测试&#xff1f;Selenium 介绍Selenium 是什么Selenium 特点工作原理 seleniumJava环境搭建ChromeJava1.下载ch…

抖音seo源码--矩阵系统开发者日志

这是矩阵系统源码开发者的日志分享&#xff0c;我们致力于为开发者们提供优质的SEO源码。我们研究用户行为、数据分析和搜索引擎算法&#xff0c;以提高内容的搜索排名和曝光度。通过不断优化关键词、元数据和链接策略&#xff0c;我们帮助抖音用户更好地被发现和分享。这个日志…

flutter开发实战-指纹、面容ID验证插件实现

flutter开发实战-指纹、面容ID验证插件实现 在iOS开发中&#xff0c;经常出现需要指纹、面容ID验证的功能。 指纹、面容ID是一种基于用生物识别技术&#xff0c;通过扫描用户的面部特征来验证用户身份。 一、效果图 二、iOS指纹、面容ID验证 在iOS中实现指纹、面容ID验证功能…

如何用爬虫实现GPT功能

如何用爬虫实现GPT功能&#xff1f; GPT&#xff08;Generative Pre-trained Transformer&#xff09;和爬虫是两个完全不同的概念和技术。GPT是一种基于Transformer模型的自然语言处理模型&#xff0c;用于生成文本&#xff0c;而爬虫是一种用于从互联网上收集数据的技术。 …

【数据结构与算法】力扣:对称二叉树

对称二叉树 给你一个二叉树的根节点 root &#xff0c; 检查它是否轴对称。 示例 1&#xff1a; 输入&#xff1a;root [1,2,2,3,4,4,3] 输出&#xff1a;true 示例 2&#xff1a; 输入&#xff1a;root [1,2,2,null,3,null,3] 输出&#xff1a;false 来源&#xff1a;…

GlusterFs 分布式复制卷(Distributed-Replicate)性能测试

目录 fio工具参数解释 Glusterfs 和NFS 性能测试 顺序写&#xff1a; 随机写&#xff1a; 顺序读&#xff1a; 随机读&#xff1a; 随机读写&#xff1a; 参数说明&#xff1a; 测试结论&#xff1a; 与NFS对比 压测对比结果 NFS和GlusterFs的优缺点 NFS的优点 NFS…

看完这篇异地多活的改造,我决定和架构师battle一下

1. 简述 异地多活的概念以及为什么要做异地多活这里就不进行概述了。概念性的很多&#xff0c;像什么同城双活、两地三中心、三地五中心等等概念。如果有对这些容灾架构模式感兴趣的可以阅读下这篇文章进行了解&#xff1a;《浅谈业务级灾备的架构模式》。 阅读本篇文章之前&…

脚踏Java知识点

对上节Java的基础语法续讲 三元运算符和if语句格式的区别 语法格式&#xff1a; 三元运算符的语法格式是&#xff1a;(condition) ? expression1 : expression2&#xff1b; if语句的语法格式是&#xff1a; if (condition) { // 执行 expression1 } else { // 执行 express…