使用matplotlib制作动态图

使用matplotlib制作动态图

    • 一、简介
    • 二、模块简介
      • 1. **FuncAnimation**类介绍
      • 2. 定义动画更新函数
    • 三、使用matplotlib制作动画
      • 1.一步法制作动态图片
      • 2. 两步法制作动态图片

一、简介

matplotlib(https://matplotlib.org/)是一个著名的python绘图库,由于其灵活强大的绘图功能使得在python中可视化变得非常容易,关于matplotlib的基础知识这里不再介绍,有疑问可以去官网翻Tutorials和example学习。由于我们实际使用时常常是绘制静态图,忽略了matplotlib的动态图生成功能,同时matplotlib生成动态图的功能不是非常友善,因此大部分人在真的需要制作动态图时都会选择先用matplotlib生成一系列静态图片,然后再用其它相对比较容易使用的第三方python库生成动态图,如imageio(https://imageio.readthedocs.io/en/stable/#), 或者使用其它工具,如Matlab。这里打算简单介绍一下在matplotlib库中制作动态图的方法。

二、模块简介

matplotlib的animation模块提供了动态图制作功能,animation类提供了两个方法来生成动态图,即FuncAnimationArtistAnimation,这里我们使用FuncAnimation方法重复调用函数来生成图片。

1. FuncAnimation类介绍

FuncAnimation类的主要参数包括:

  • fig: 每一帧画面绘制使得Figure对象
  • func: 定义动画每一帧的更新函数,通常这一函数需要包含额外参数,此时可以用functools.partial来生成。
  • frames:可以是可迭代对象,整数,或者生成函数或者缺省。
  • init_func:初始化函数
  • inteval:每一帧画面的停留时间
  • repeat:当动态图中所有帧都播放完了之后是否重复播放
  • bilt:是否使用blitting来优化绘图

2. 定义动画更新函数

FunAnimation类中,更新函数在每一帧中都会被重新调用,通过在更新函数中更改一些绘图函数的数据,在每一帧我们就能得到不同的图片,然后FunAnimation的Writer(后端)将这些图片组合就能得到动态图片。关于更新函数的一些需要注意的地方是:

  • 如果设置了bilt == True,更新函数的最后就需要返回所有被修改或创建的Artists的引用变量
  • 生成函数的第一个传入参数必须是当前的帧数,其具体值可以通过frames参数定义,可以是可迭代类型或整数

三、使用matplotlib制作动画

1.一步法制作动态图片

由于matplotlib本身自带强大的绘图功能,因此我们可以不用生成图片,直接在初始绘图的基础上通过更新函数来修改绘图数据,一步直接生成动态图片,方便快捷,以下是代码:

import numpy as np
from matplotlib.animation import FuncAnimation
import matplotlib.pyplot as plt
from functools import partial

### 绘制y=sin(2pi(x+t/t_0))*sin(2pi(t/t_0))
def getSinx_t(t=0, t_0=120, x_count=1e5):
    x = np.linspace(0.0, 1.0, int(x_count))
    y = np.sin(2.0*np.pi*(x + t/t_0))*np.sin(t/t_0*2.0*np.pi)
    return x, y


### 图片初始化
fig, ax = plt.subplots(dpi=100)
ax.set_aspect('auto')
ax.set_xlim((0.0, 1.0))
ax.set_ylim((-1.0, 1.0))
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_title(r'$y=sin[2\pi(x+t/t_0)]*sin(2\pi t/t_0)$')


### 绘制初始曲线
x, y = getSinx_t()
y_up = y[np.where(y>0)]
x_up = x[np.where(y>0)]
x_dn = x[np.where(y<0)]
y_dn = y[np.where(y<0)]
plot_line = ax.plot(x, y)
plot_hline = ax.hlines(y=0.0, xmin=0.0, xmax=1.0, linestyles='dashed', colors='grey')
fill_xy_up = ax.fill_between(x=x_up, y1=y_up, y2=0, color='red', alpha=0.3)
fill_xy_dn = ax.fill_between(x=x_dn, y1=y_dn, y2=0, color='green', alpha=0.3)
plot_text = ax.text(x=0.8, y=0.75, s='t=0', fontsize=16, fontfamily='cursive')


### 定义动画更新函数
def UpdateFigure(num, f_plot_line, f_fill_xy_up, f_fill_xy_dn, f_plot_text):
    x_update, y_update = getSinx_t(t=num)
    f_plot_line[0].set_data(x_update, y_update)
    f_plot_text.set_text('t={}'.format(num))
    x_up = x_update[np.where(y_update>0)]
    y_up = y_update[np.where(y_update>0)]
    xy_up1 = np.column_stack((x_up, y_up))
    xy_up2 = np.column_stack((x_up[::-1], np.zeros(x_up.shape)))
    x_dn = x_update[np.where(y_update<0)]
    y_dn = y_update[np.where(y_update<0)]
    xy_dn1 = np.column_stack((x_dn, y_dn))
    xy_dn2 = np.column_stack((x_dn[::-1], np.zeros(x_dn.shape)))
    f_fill_xy_up.set_verts([np.vstack((xy_up1, xy_up2))])
    f_fill_xy_dn.set_verts([np.vstack((xy_dn1, xy_dn2))])
    return [f_plot_line[0], f_fill_xy_up, f_fill_xy_dn, f_plot_text]


### 创建FunAnimation对象
ani = FuncAnimation(fig, partial(
        UpdateFigure, 
        f_plot_line=plot_line, 
        f_fill_xy_up=fill_xy_up,
        f_fill_xy_dn=fill_xy_dn,
        f_plot_text=plot_text),
    np.arange(120),
    blit=True)


### 保存动态图片
ani.save('sinxt.gif', fps=60)  

以下为得到的动态图片:
在这里插入图片描述

2. 两步法制作动态图片

所谓两步法是指,首先用matplotlib生成一系列静态图片,然后结合matplotlib.image.imread读取图片功能和matplotlib.axes.Axes.imshow展示图片功能,来动态地更新图片,这种方法相比于上一种方法稍微复杂,但是这种方法灵活性更高,同时也可以用来组合一些非matplotlib生成的图片。以下为代码:

import matplotlib.pyplot as plt
import matplotlib.image as mimg
from matplotlib.animation import FuncAnimation
import numpy as np
from functools import partial
import os


### 绘制y=cos(2pi(x+t/t_0))*cos(2pi(t/t_0))
def getCosx_t(t=0, t_0=120, x_count=1e5):
    x = np.linspace(0.0, 1.0, int(x_count))
    y = np.cos(2.0*np.pi*(x + t/t_0))*np.cos(t/t_0*2.0*np.pi)
    return x, y


fig_count = 120             # 图片总数


### 定义生成所有图片的函数
def getFigrues(fig_count):
    try:
        os.mkdir('fig')
    except FileExistsError:
        print("Dir Exist!")
    for i in range(fig_count):
        fig, ax = plt.subplots(dpi=100)
        ax.set_aspect('auto')
        ax.set_xlim((0.0, 1.0))
        ax.set_ylim((-1.0, 1.0))
        ax.set_xlabel('x')
        ax.set_ylabel('y')
        ax.set_title(r'$y=cos[2\pi(x+t/t_0)]*cos(2\pi t/t_0)$')
        x, y = getCosx_t(t=i)
        y_up = y[np.where(y>0)]
        x_up = x[np.where(y>0)]
        x_dn = x[np.where(y<0)]
        y_dn = y[np.where(y<0)]
        ax.plot(x, y)
        ax.hlines(y=0.0, xmin=0.0, xmax=1.0, linestyles='dashed', colors='grey')
        ax.fill_between(x=x_up, y1=y_up, y2=0, color='red', alpha=0.3)
        ax.fill_between(x=x_dn, y1=y_dn, y2=0, color='green', alpha=0.3)
        ax.text(x=0.8, y=0.75, s='t={}'.format(i), fontsize=16, fontfamily='cursive')
        fig.show(False)
        fig.savefig('./fig/{}.jpg'.format(i))
        plt.close(fig)
getFigrues(fig_count) 


### 读取图片尺寸
def GetFigSize(fig_path='./fig/0.jpg'):
    now_img = mimg.imread(fname=fig_path)
    img_pxy = now_img.shape
    return img_pxy[1], img_pxy[0]


### 绘图初始化
img_px, img_py = GetFigSize()
img_dpi=100
fig, ax = plt.subplots(figsize=[img_px/img_dpi, img_py/img_dpi], dpi=img_dpi)
ax.set_aspect('equal')
ax.set_position([0.0, 0.0, 1.0, 1.0])
ax.set_axis_off()
plot_img = ax.imshow(X=np.zeros((img_py, img_px, 3)))


### 定义动画更新函数
def UpdateImages(num, f_plot_img):
    now_img_path = './fig/{}.jpg'.format(num)
    now_img = mimg.imread(fname=now_img_path)
    f_plot_img.set_data(now_img)
    return [f_plot_img]


### 创建FunAnimation对象
ani = FuncAnimation(
    fig, partial(UpdateImages, f_plot_img=plot_img),
    np.arange(fig_count),
    blit=True)


### 保存动态图片
ani.save('cosxt.gif', fps=60)  

得到的动态图片:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/34981.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

计算机视觉 + Self-Supervised Learning 五种算法原理解析

计算机视觉领域下自监督学习方法原理 导语为什么在计算机视觉领域中进行自我监督学习&#xff1f; 自监督学习方法Generative methodsBEiT 架构 Predictive methodsContrastive methodsBootstraping methodsSimply Extra Regularization methods 导语 自监督学习是一种机器学习…

SQL Server SQL语句

在很多情况下&#xff0c;可以用CREATE TABLE语句创建数据表、使用ALTER TABLE语句修改表结构、使用DROP TABLE语句删除表&#xff1b; 可以使用CREATE DATABASE创建数据库、ALTER DATABASE修改文件或文件组、DROP DATABASE语句删除数据库&#xff1b; 1、数据定义语句&#x…

【MySQL】MySQL基本语句大全

个人主页&#xff1a;【&#x1f60a;个人主页】 系列专栏&#xff1a;【❤️MySQL】 文章目录 前言结构化查询语句分类MySQL语句大全&#x1f4da;DDL&#xff08;对数据库和表的操作&#xff09;&#x1f916;DQL&#xff08;查询语句&#xff09;&#x1f4bb;关键字&#x…

AI最新开源:LMSYS Org开源LongChat、法律大语言模型ChatLaw、中文医疗对话模型扁鹊

一周SOTA&#xff1a;LMSYS Org开源LongChat、法律大语言模型ChatLaw、中文医疗对话模型扁鹊 文章目录 1. LMSYS Org发布LongChat&#xff0c;上下文碾压64K开源模型2. 北大团队发布法律大模型 ChatLaw3. 扁鹊&#xff1a;指令与多轮问询对话联合微调的医疗对话大模型 1. LMSY…

目标检测的评估指标

Precision(精确率/查准率)&#xff1a;是指在所有被预测为正的样本中&#xff0c;确实是正样本的占比。当Precision越大时&#xff0c;FP越小&#xff0c;此时将其他类别预测为本类别的个数也就越少&#xff0c;可以理解为预测出的正例纯度越高。Precision越高&#xff0c;误检…

使用 Jackson 库对日期时间的动态序列化反序列化操作

0.背景 因某项目中的数据报表功能在创建年报 和月报时需要生成不同的日期格式&#xff0c;但数据结构未变&#xff0c;为避免类的冗余定义&#xff0c;故使用如下方式来动态设置日期格式&#xff0c;在不同报表是使用不同格式的时间格式来保存数据。 1.代码介绍 PS:此介绍有Cha…

Quiz 12: Regular Expressions | Python for Everybody 配套练习_解题记录

文章目录 Python for Everybody课程简介Regular Expressions单选题&#xff08;1-8&#xff09;操作题Regular Expressions Python for Everybody 课程简介 Python for Everybody 零基础程序设计&#xff08;Python 入门&#xff09; This course aims to teach everyone the …

OpenCV——分水岭算法

目录 一、分水岭算法1、概述2、图像分割概念3、分水岭算法原理 二、主要函数三、C代码四、结果展示1、原始图像2、分割结果 五、参考链接 一、分水岭算法 1、概述 分水岭算法是一种图像分割常用的算法&#xff0c;可以有效地将图像中的目标从背景中分离出来。本文以OpenCV库中…

神坑:ElasticSearch8集群启动报错“Device or resource busy”(Docker方式)

昨天在Docker中配置ElasticSearcch8集群模式时&#xff0c;先初步配置了master主节点。然后主节点启动就报错&#xff0c;看日志&#xff0c;提示“Device or resource busy”。异常第一句大概这个样子&#xff1a; Exception in thread "main" java.nio.file.FileS…

【ARIMA-WOA-CNN-LSTM】合差分自回归移动平均方法-鲸鱼优化-卷积神经网络-长短期记忆神经网络研究(Python代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

Redis优化

目录 一、Redis高可用 二、Redis持久化 1.RDB持久化 1.1触发条件 1.1.1手动触发 1.1.2自动触发 1.2其他自动触发机制 1.3执行流程 1.4启动时加载 2.AOF 持久化 2.1开启AOF 2.2执行流程 2.2.1命令追加(append) 2.2.2文件写入(write)和文件同步(sync) 2.2.3文件重…

docker-compose实现微服务jar+mysql的容器服务发布(经典版)

一 安装mysql服务 1.1 拉取镜像 1.拉取&#xff1a; docker pull mysql:5.7.29 2.查看镜像&#xff1a; docker images 1.2 在宿主机创建文件存储mysql 1.创建映射目录&#xff1a;mysql-c5 在/root/export/dockertest 目录下&#xff0c;mkdir -p mysql-c5 &#…

SpringBoot实战(十九)集成Ribbon

目录 一、负载均衡的分类1.服务端负载均衡2.客户端负载均衡 二、定义和依赖1.Ribbon2.Spring Cloud Ribbon3.Spring Cloud Loadbalancer 三、搭建测试项目1.Maven依赖2.yaml配置3.配置类4.启动类5.接口类 四、测试五、补充&#xff1a;认识 Ribbon 的组件 一、负载均衡的分类 …

open3D cmake+win10+vs2019编译

已经采用python版open3D实现和验证了功能&#xff0c;但是在C迁移上却遇到了不少问题&#xff1a; 1、可能是与本地的编译器存在差异&#xff0c;在使用open3D git上的winows版本时&#xff0c;存在地址访问冲突和std::bad_alloc等问题。前者在适用IO读写时必现&#xff0c;后者…

【动态规划上分复盘】下降路径最小和|礼物的最大价值

欢迎 前言一、动态规划五部曲二、下降路径最小和思路&#xff1a;动态规划解法具体代码如下 三、礼物的最大价值思路&#xff1a;动态规划具体代码如下: 总结 前言 本文主要讲述动态规划思路的下降路径最小和以及礼物的最大价值两道题。 一、动态规划五部曲 1.确定状态表示&a…

Linux【系统学习】(shell篇)

第 1 章 Shell 概述 1&#xff09;Linux 提供的 Shell 解析器有 Ubuntu 使用的是dash 2&#xff09;bash 和 sh 的关系 3&#xff09;Centos 默认的解析器是 bash 第 2 章 Shell 脚本入门 1&#xff09;脚本格式 &#xff08;结尾不是必须以 .sh 结尾&#xff0c;只是为了区…

ModaHub魔搭社区:基于 Amazon EKS 搭建开源向量数据库 Milvus

目录 01 前言 02 架构说明 03 先决条件 04 创建 EKS 集群 05 部署 Milvus 数据库 06 优化 Milvus 配置 07 测试 Milvus 集群 08 总结 01 前言 生成式 AI&#xff08;Generative AI&#xff09;的火爆引发了广泛的关注&#xff0c;也彻底点燃了向量数据库&…

【网络原理之三】应用层协议HTTP和HTTPS

HTTP什么是HTTP工作过程协议格式协议内容HTTP请求MethodURLURL的encode和decode Version请求报头请求正文 HTTP响应状态码响应报头 HTTPSHTTPS执行过程加密对称加密非对称加密 证书 HTTP 什么是HTTP HTTP&#xff1a;超文本传输协议。是一种应用非常广泛的应该层协议。 所谓 “…

图片加载失败捕获上报及处理

图片加载失败捕获上报及处理 前端页面中加载最多的静态资源之一就是图片了&#xff0c;当出现图片加载失败时&#xff0c;非常影响用户体验。这时候我们就需要对图片是否成功加载进行判断&#xff0c;并对图片加载失败进行处理。 图片加载监听 单个捕获 HTML中的img标签可以…