大创项目推荐 题目:垃圾邮件(短信)分类 算法实现 机器学习 深度学习 开题

文章目录

  • 1 前言
  • 2 垃圾短信/邮件 分类算法 原理
    • 2.1 常用的分类器 - 贝叶斯分类器
  • 3 数据集介绍
  • 4 数据预处理
  • 5 特征提取
  • 6 训练分类器
  • 7 综合测试结果
  • 8 其他模型方法
  • 9 最后

1 前言

🔥 优质竞赛项目系列,今天要分享的是

基于机器学习的垃圾邮件分类

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 垃圾短信/邮件 分类算法 原理

垃圾邮件内容往往是广告或者虚假信息,甚至是电脑病毒、情色、反动等不良信息,大量垃圾邮件的存在不仅会给人们带来困扰,还会造成网络资源的浪费;

网络舆情是社会舆情的一种表现形式,网络舆情具有形成迅速、影响力大和组织发动优势强等特点,网络舆情的好坏极大地影响着社会的稳定,通过提高舆情分析能力有效获取发布舆论的性质,避免负面舆论的不良影响是互联网面临的严肃课题。

将邮件分为垃圾邮件(有害信息)和正常邮件,网络舆论分为负面舆论(有害信息)和正面舆论,那么,无论是垃圾邮件过滤还是网络舆情分析,都可看作是短文本的二分类问题。

在这里插入图片描述

2.1 常用的分类器 - 贝叶斯分类器

贝叶斯算法解决概率论中的一个典型问题:一号箱子放有红色球和白色球各 20 个,二号箱子放油白色球 10 个,红色球 30
个。现在随机挑选一个箱子,取出来一个球的颜色是红色的,请问这个球来自一号箱子的概率是多少?

利用贝叶斯算法识别垃圾邮件基于同样道理,根据已经分类的基本信息获得一组特征值的概率(如:“茶叶”这个词出现在垃圾邮件中的概率和非垃圾邮件中的概率),就得到分类模型,然后对待处理信息提取特征值,结合分类模型,判断其分类。

贝叶斯公式:

P(B|A)=P(A|B)*P(B)/P(A)

P(B|A)=当条件 A 发生时,B 的概率是多少。代入:当球是红色时,来自一号箱的概率是多少?

P(A|B)=当选择一号箱时,取出红色球的概率。

P(B)=一号箱的概率。

P(A)=取出红球的概率。

代入垃圾邮件识别:

P(B|A)=当包含"茶叶"这个单词时,是垃圾邮件的概率是多少?

P(A|B)=当邮件是垃圾邮件时,包含“茶叶”这个单词的概率是多少?

P(B)=垃圾邮件总概率。

P(A)=“茶叶”在所有特征值中出现的概率。

在这里插入图片描述

3 数据集介绍

使用中文邮件数据集:丹成学长自己采集,通过爬虫以及人工筛选。

数据集“data” 文件夹中,包含,“full” 文件夹和 “delay” 文件夹。

“data” 文件夹里面包含多个二级文件夹,二级文件夹里面才是垃圾邮件文本,一个文本代表一份邮件。“full” 文件夹里有一个 index
文件,该文件记录的是各邮件文本的标签。

在这里插入图片描述

数据集可视化:

在这里插入图片描述

4 数据预处理

这一步将分别提取邮件样本和样本标签到一个单独文件中,顺便去掉邮件的非中文字符,将邮件分好词。

邮件大致内容如下图:

在这里插入图片描述

每一个邮件样本,除了邮件文本外,还包含其他信息,如发件人邮箱、收件人邮箱等。因为我是想把垃圾邮件分类简单地作为一个文本分类任务来解决,所以这里就忽略了这些信息。
用递归的方法读取所有目录里的邮件样本,用 jieba 分好词后写入到一个文本中,一行文本代表一个邮件样本:

import re
import jieba
import codecs
import os 
# 去掉非中文字符
def clean_str(string):
    string = re.sub(r"[^\u4e00-\u9fff]", " ", string)
    string = re.sub(r"\s{2,}", " ", string)
    return string.strip()

def get_data_in_a_file(original_path, save_path='all_email.txt'):
    files = os.listdir(original_path)
    for file in files:
        if os.path.isdir(original_path + '/' + file):
                get_data_in_a_file(original_path + '/' + file, save_path=save_path)
        else:
            email = ''
            # 注意要用 'ignore',不然会报错
            f = codecs.open(original_path + '/' + file, 'r', 'gbk', errors='ignore')
            # lines = f.readlines()
            for line in f:
                line = clean_str(line)
                email += line
            f.close()
            """
            发现在递归过程中使用 'a' 模式一个个写入文件比 在递归完后一次性用 'w' 模式写入文件快很多
            """
            f = open(save_path, 'a', encoding='utf8')
            email = [word for word in jieba.cut(email) if word.strip() != '']
            f.write(' '.join(email) + '\n')

print('Storing emails in a file ...')
get_data_in_a_file('data', save_path='all_email.txt')
print('Store emails finished !')

然后将样本标签写入单独的文件中,0 代表垃圾邮件,1 代表非垃圾邮件。代码如下:

def get_label_in_a_file(original_path, save_path='all_email.txt'):
    f = open(original_path, 'r')
    label_list = []
    for line in f:
        # spam
        if line[0] == 's':
            label_list.append('0')
        # ham
        elif line[0] == 'h':
            label_list.append('1')

    f = open(save_path, 'w', encoding='utf8')
    f.write('\n'.join(label_list))
    f.close()

print('Storing labels in a file ...')
get_label_in_a_file('index', save_path='label.txt')
print('Store labels finished !')

5 特征提取

将文本型数据转化为数值型数据,本文使用的是 TF-IDF 方法。

TF-IDF 是词频-逆向文档频率(Term-Frequency,Inverse Document Frequency)。公式如下:

在这里插入图片描述

在所有文档中,一个词的 IDF 是一样的,TF 是不一样的。在一个文档中,一个词的 TF 和 IDF
越高,说明该词在该文档中出现得多,在其他文档中出现得少。因此,该词对这个文档的重要性较高,可以用来区分这个文档。

在这里插入图片描述

import jieba
from sklearn.feature_extraction.text import TfidfVectorizer

def tokenizer_jieba(line):
    # 结巴分词
    return [li for li in jieba.cut(line) if li.strip() != '']

def tokenizer_space(line):
    # 按空格分词
    return [li for li in line.split() if li.strip() != '']

def get_data_tf_idf(email_file_name):
    # 邮件样本已经分好了词,词之间用空格隔开,所以 tokenizer=tokenizer_space
    vectoring = TfidfVectorizer(input='content', tokenizer=tokenizer_space, analyzer='word')
    content = open(email_file_name, 'r', encoding='utf8').readlines()
    x = vectoring.fit_transform(content)
    return x, vectoring

6 训练分类器

这里学长简单的给一个逻辑回归分类器的例子

from sklearn.linear_model import LogisticRegression
from sklearn import svm, ensemble, naive_bayes
from sklearn.model_selection import train_test_split
from sklearn import metrics
import numpy as np

if __name__ == "__main__":
    np.random.seed(1)
    email_file_name = 'all_email.txt'
    label_file_name = 'label.txt'
    x, vectoring = get_data_tf_idf(email_file_name)
    y = get_label_list(label_file_name)

    # print('x.shape : ', x.shape)
    # print('y.shape : ', y.shape)
    
    # 随机打乱所有样本
    index = np.arange(len(y))  
    np.random.shuffle(index)
    x = x[index]
    y = y[index]

    # 划分训练集和测试集
    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2)

    clf = svm.LinearSVC()
    # clf = LogisticRegression()
    # clf = ensemble.RandomForestClassifier()
    clf.fit(x_train, y_train)
    y_pred = clf.predict(x_test)
    print('classification_report\n', metrics.classification_report(y_test, y_pred, digits=4))
    print('Accuracy:', metrics.accuracy_score(y_test, y_pred))

7 综合测试结果

测试了2000条数据,使用如下方法:

  • 支持向量机 SVM

  • 随机数深林

  • 逻辑回归
    在这里插入图片描述

可以看到,2000条数据训练结果,200条测试结果,精度还算高,不过数据较少很难说明问题。

8 其他模型方法

还可以构建深度学习模型

在这里插入图片描述

网络架构第一层是预训练的嵌入层,它将每个单词映射到实数的N维向量(EMBEDDING_SIZE对应于该向量的大小,在这种情况下为100)。具有相似含义的两个单词往往具有非常接近的向量。

第二层是带有LSTM单元的递归神经网络。最后,输出层是2个神经元,每个神经元对应于具有softmax激活功能的“垃圾邮件”或“正常邮件”。



    def get_embedding_vectors(tokenizer, dim=100):
    embedding_index = {}
    with open(f"data/glove.6B.{dim}d.txt", encoding='utf8') as f:
    for line in tqdm.tqdm(f, "Reading GloVe"):
    values = line.split()
    word = values[0]
    vectors = np.asarray(values[1:], dtype='float32')
    embedding_index[word] = vectors
    
    word_index = tokenizer.word_index
    embedding_matrix = np.zeros((len(word_index)+1, dim))
    for word, i in word_index.items():
    embedding_vector = embedding_index.get(word)
    if embedding_vector is not None:
    # words not found will be 0s
    embedding_matrix[i] = embedding_vector
    
    return embedding_matrix


    def get_model(tokenizer, lstm_units):
    """
    Constructs the model,
    Embedding vectors => LSTM => 2 output Fully-Connected neurons with softmax activation
    """
    # get the GloVe embedding vectors
    embedding_matrix = get_embedding_vectors(tokenizer)
    model = Sequential()
    model.add(Embedding(len(tokenizer.word_index)+1,
    EMBEDDING_SIZE,
    weights=[embedding_matrix],
    trainable=False,
    input_length=SEQUENCE_LENGTH))
    
    model.add(LSTM(lstm_units, recurrent_dropout=0.2))
    model.add(Dropout(0.3))
    model.add(Dense(2, activation="softmax"))
    # compile as rmsprop optimizer
    # aswell as with recall metric
    model.compile(optimizer="rmsprop", loss="categorical_crossentropy",
    metrics=["accuracy", keras_metrics.precision(), keras_metrics.recall()])
    model.summary()
    return model

训练结果如下:

_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
embedding_1 (Embedding) (None, 100, 100) 901300
_________________________________________________________________
lstm_1 (LSTM) (None, 128) 117248
_________________________________________________________________
dropout_1 (Dropout) (None, 128) 0
_________________________________________________________________
dense_1 (Dense) (None, 2) 258
=================================================================
Total params: 1,018,806
Trainable params: 117,506
Non-trainable params: 901,300
_________________________________________________________________
X_train.shape: (4180, 100)
X_test.shape: (1394, 100)
y_train.shape: (4180, 2)
y_test.shape: (1394, 2)
Train on 4180 samples, validate on 1394 samples
Epoch 1/20
4180/4180 [==============================] - 9s 2ms/step - loss: 0.1712 - acc: 0.9325 - precision: 0.9524 - recall: 0.9708 - val_loss: 0.1023 - val_acc: 0.9656 - val_precision: 0.9840 - val_recall: 0.9758

Epoch 00001: val_loss improved from inf to 0.10233, saving model to results/spam_classifier_0.10
Epoch 2/20
4180/4180 [==============================] - 8s 2ms/step - loss: 0.0976 - acc: 0.9675 - precision: 0.9765 - recall: 0.9862 - val_loss: 0.0809 - val_acc: 0.9720 - val_precision: 0.9793 - val_recall: 0.9883

在这里插入图片描述

9 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/347380.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

网络协议与攻击模拟_09部署DHCP服务器

一、部署DHCP服务器 Windows server部署DHCP服务器 1、虚拟机网络架构理解 Vmware里面不同的虚拟机可以设置相同的Vmnet网络,也可以设置不同的Vmnet网络。两台虚拟机设置相同的Vmnet1网卡,可以看作为使用虚拟交换机将两台Vmnet1的虚拟机连接起来的。 …

在使用springboot框架式的的script无法通过${}来获取值

今天使用springboot框架做项目&#xff0c;想着来实现一下搜索的下拉框回显功能&#xff0c;然后就一直在报错误&#xff0c;关键是报的错误牛头不对马嘴&#xff0c;检查了一下后端代码&#xff0c;发现没什么问题&#xff0c;就把目光聚焦了.jsp页面的代码 <script type&…

xinput1_3.dll文件的几种修复办法以及修复xinput1_3.dll注意事项

xinput1_3.dll文件是DirectX的一部分&#xff0c;它在Windows系统中负责处理游戏控制器的输入。然而&#xff0c;有时候此文件可能会出现问题&#xff0c;导致游戏无法正常运行或启动。在本文中&#xff0c;将介绍多种解决xinput1_3.dll文件问题的方法&#xff0c;并对它们进行…

Linux本地部署MeterSphere测试平台并实现公网远程访问

文章目录 前言1. 安装MeterSphere2. 本地访问MeterSphere3. 安装 cpolar内网穿透软件4. 配置MeterSphere公网访问地址5. 公网远程访问MeterSphere6. 固定MeterSphere公网地址 前言 MeterSphere 是一站式开源持续测试平台, 涵盖测试跟踪、接口测试、UI 测试和性能测试等功能&am…

Java项目:基于SSM框架实现同城蔬菜配送管理系统(SSM+B/S架构+源码+数据库+毕业论文)

一、项目简介 本项目是一套ssm825基于SSM框架实现同城蔬菜配送管理系统&#xff0c;主要针对计算机相关专业的正在做毕设的学生与需要项目实战练习的Java学习者。 包含&#xff1a;项目源码、数据库脚本等&#xff0c;该项目附带全部源码可作为毕设使用。 项目都经过严格调试&…

Go Zero微服务个人探究之路(十)实战走通微服务前台请求调用的一套流程model->rpc微服务->apiHTTP调用

前言 Go语言凭借低占用&#xff0c;高并发等优秀特性成为后台编程语言的新星&#xff0c;GoZero框架由七牛云技术副总裁团队编写&#xff0c;目前已经成为Go微服务框架里star数量最多的框架 本文记录讲述笔者一步步走通前台向后台发出请求&#xff0c;后台api调用rpc服务的相…

【AI大模型】WikiChat超越GPT-4:在模拟对话中事实准确率提升55%终极秘密

WikiChat&#xff0c;这个名字仿佛蕴含了无尽的智慧和奥秘。它不仅是一个基于人工智能和自然语言处理技术的聊天机器人&#xff0c;更是一个能够与用户进行深度交流的智能伙伴。它的五个突出特点&#xff1a;高度准确、减少幻觉、对话性强、适应性强和高效性能&#xff0c;使得…

蓝桥杯备战——4.继电器/蜂鸣器

1.分析原理图 最好自己先去查查138以及ULN2003的使用方法&#xff0c;我这里直接讲思路。 由上图我们可以看到如果138输入ABC101,则输出Y50,此时若WR通过跳线帽接地则Y5C1 &#xff0c;于是573(U9)处于输出跟随输入P0状态&#xff0c;此时若P061&#xff0c;则573输出Q71&am…

ITSS服务工程师:开启IT职业生涯的金钥匙

&#x1f525;ITSS是中国电子技术标准化研究院推出的&#xff0c;涵盖了“IT服务工程师”和“IT服务经理”的系列培训。它不仅满足GB/T 28827.1的符合性评估要求&#xff0c;还助力IT服务资质升级。 &#x1f3af;“IT服务工程师”培训从服务技术、服务技巧和服务规范三大板块&…

加载服务端发送的模型文件_unity开发进阶

加载服务端发送的模型文件 前言一、服务端搭建二、unity请求文件三、加载模型结语 前言 之前我们学习制作的都是离线状态下的东西&#xff0c;今天我们学习制作一个小demo。 内容就是我们用unity请求后台&#xff0c;接受后台发送过来的模型&#xff0c;然后将模型加载到场景中…

Whisper对于中文语音识别与转写中文文本优化的实践(Python3.10)

阿里的FunAsr对Whisper中文领域的转写能力造成了一定的挑战&#xff0c;但实际上&#xff0c;Whisper的使用者完全可以针对中文的语音做一些优化的措施&#xff0c;换句话说&#xff0c;Whisper的“默认”形态可能在中文领域斗不过FunAsr&#xff0c;但是经过中文特殊优化的Whi…

面试官:请问泛型擦除、泛型上界、泛型下界、PECS原则 是什么?

什么是泛型 泛型的本质是 类型参数化&#xff0c;解决类型爆炸的问题。 所谓泛型是指将类型参数化&#xff0c;以达到代码复用提高软件开发工作效率的一种数据类型。 然后我们要定义一个盘子 plate&#xff0c;注意这个盘子除了 装入食物food之外&#xff0c;还可以装其他的…

【Kubernetes】深入了解Kubernetes(K8s):现代容器编排的引领者

欢迎来到英杰社区&#xff1a; https://bbs.csdn.net/topics/617804998 欢迎来到阿Q社区&#xff1a; https://bbs.csdn.net/topics/617897397 作者简介&#xff1a; 辭七七&#xff0c;目前大二&#xff0c;正在学习C/C&#xff0c;Java&#xff0c;Python等 作者主页&#xf…

leetcode — 贪心算法— 买卖股票的最佳时机

1 题目描述 给定一个数组 prices &#xff0c;它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。 你只能选择 某一天 买入这只股票&#xff0c;并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。 返回你可以从这笔交易中获取…

无限学模式-“科研创新的加速器:全面掌握ChatGPT,推动研究方法和工作模式现代化!“

2023年随着OpenAI开发者大会的召开&#xff0c;最重磅更新当属GPTs&#xff0c;多模态API&#xff0c;未来自定义专属的GPT。微软创始人比尔盖茨称ChatGPT的出现有着重大历史意义&#xff0c;不亚于互联网和个人电脑的问世。360创始人周鸿祎认为未来各行各业如果不能搭上这班车…

好书推荐丨豆瓣评出9.2高分!Python编程入门就看蟒蛇书

目录 写在前面 内容简介 业内专家推荐 编辑推荐 资源丰富 作者介绍 Q&A 粉丝福利 写在后面 写在前面 在这日新月异的科技新时代&#xff0c;编程如同一把万能钥匙&#xff0c;为无数人打开了通向无限可能的大门。而在众多编程语言中&#xff0c;Python无疑是最耀…

【CANoe使用大全】——DBC数据库制作

文章目录 1.DBC数据库选择1.1.DBC模板选择1.3. 新建报文1.4. 新建信号1.5.数值表建立 2. DBC导入 1.DBC数据库选择 首先找到DBC编辑器入口 1.1.DBC模板选择 举例说明&#xff1a; 新建选择CANFD的模板 1.3. 新建报文 注意上图中报文周期“Cycle Time”处于不可编辑状态…

【C++】介绍STL中list容器的常用接口

目录 一、STL中的list简介 二、构造函数 2.1 默认构造函数 2.2 填充构造&#xff08;用n个相同的值构造&#xff09; 2.3 迭代器构造 2.4 拷贝构造和赋值运算符重载 三、迭代器 3.1 正向迭代器 3.2 反向迭代器 四、容量相关 4.1 获取list中有效数据的个数 4.2 判…

【Web前端开发基础】CSS3之空间转换和动画

CSS3之空间转换和动画 目录 CSS3之空间转换和动画一、空间转换1.1 概述1.2 3D转换常用的属性1.3 3D转换&#xff1a;translate3d&#xff08;位移&#xff09;1.4 3D转换&#xff1a;perspective&#xff08;视角&#xff09;1.5 3D转换&#xff1a;rotate3d&#xff08;旋转&a…

使用StrictMode优化Android应用程序的ANR率

使用StrictMode优化Android应用程序的ANR率 本文将解释StrictMode是什么以及如何在Android应用程序中使用它作为ANR观察器。 什么是StrictMode以及为什么使用它&#xff1f; StrictMode是帮助开发人员防止ANR并减少在Android系统中产生ANR的机会的工具之一。 从developer.a…