基于变异混合蛙跳算法的车间调度最优化matlab仿真,可以任意调整工件数和机器数,输出甘特图

目录

1.程序功能描述

2.测试软件版本以及运行结果展示

3.核心程序

4.本算法原理

4.1 车间调度问题(JSSP)描述

4.2 蛙跳算法(SFLA)基本原理

4.2.1 初始化

4.2.2 局部搜索

4.2.3 全局信息交换

4.2.4 变异策略

4.2.5 终止条件

5.完整程序


1.程序功能描述

变异混合蛙跳算法的车间调度最优化,可以任意调整工件数和机器数,输出甘特图。

2.测试软件版本以及运行结果展示

MATLAB2022a版本运行

3.核心程序

.........................................................

%初始种群
Pop_n = round(sqrt(Npop));                  
Pop_s = ceil(Npop/Pop_n);               
Npop  = Pop_s*Pop_n;                      

[Xs,ff] = func_initial(T,Npop);

fout = zeros(Iters,1);                                      
for i = 1:Iters
    i
    [ff,I] = sort(ff,'descend');
    Xs     = Xs(I,:);
    Pmax   = Xs(1,:);
    Fmax   = ff(1);

    for j = 1:Pop_n
        Pops       = Xs(j:Pop_n:end,:);            % 子种群
        ff_        = ff(j:Pop_n:end,:);
        [Popss,F3] = func_FLA(T,Pops,ff_,Pmax,Fmax);

        Xs(j:Pop_n:end,:) = Popss;
        ff(j:Pop_n:end,:) = F3;
    end

    [Xsolve,ybest]  = func_Eval(Xs,ff);                      % 进化结果评估
        

    fout(i) = -mean(ybest);
end


 

figure
[Fouts,Etime] = func_fitness(T,Xsolve);
Stime         = Etime-T(:,Xsolve); % 开始时间
fval          = -Fouts;
M1            = size(T,1);    % 行数M1为机器数
NX            = length(Xsolve);    % 列数NX为工件数
for i = 1:M1
    for j = 1:NX
        x1 = Stime(i,j);
        x2 = Etime(i,j);
        y1 = i-1;
        y2 = i-0.05;
        fill([x1 x2 x2 x1],[y1 y1 y2 y2],[0,1,0]);
        text(x1*0.55+x2*0.45,(y1+y2)/2,[num2str(Xsolve(j))],'Fontsize',8,'Color','k');
        hold on;
    end
    text(-0.8,(y1+y2)/2,['机器 ',num2str(i)],'Fontsize',8,'Color','k');
end

hold off; 
xlabel('时间'); 
set(gca,'ytick',[],'YDir','reverse','Color',[1 1 1]);
axis([0 fval 0 M1-0.05]);
title(['工件数:',num2str(NX),', 机器数:',num2str(M1),', 最优值:',num2str(fval)]);


figure;
plot(1:Iters,fout(1:end),'b-o'); 
grid on;
xlabel('进化代数'); 
ylabel('适应度');
21

4.本算法原理

          基于变异混合蛙跳算法的车间调度最优化是一种结合了蛙跳算法(Shuffled Frog Leaping Algorithm, SFLA)和变异策略的优化方法,用于解决车间调度问题(Job-Shop Scheduling Problem, JSSP)。

4.1 车间调度问题(JSSP)描述

       给定一个车间,其中有 (n) 个作业(Jobs)和 (m) 台机器(Machines)。每个作业由一系列工序(Operations)组成,每个工序必须在特定的机器上完成,且每个作业的工序顺序是预先确定的。JSSP的目标是为每个机器找到一个作业工序的序列,使得所有作业的总完成时间最小化。

4.2 蛙跳算法(SFLA)基本原理

        蛙跳算法是一种群体智能优化算法,模拟了蛙群在寻找食物时的跳跃行为。在SFLA中,蛙群被分为多个子群,每个子群内的蛙通过局部搜索和信息交换寻找最优解。VHSFLA在基本SFLA的基础上引入了变异策略,以增强算法的全局搜索能力和避免陷入局部最优解。

4.2.1 初始化

  • 初始化蛙群:随机生成一定数量的蛙(解),每个蛙代表一个可能的作业调度方案。
  • 分组:将蛙群分为多个子群。

4.2.2 局部搜索

在每个子群内,蛙按照一定的规则进行跳跃(即解的更新)。跳跃的步长和方向通常由当前蛙的位置、子群内最优蛙的位置以及全局最优蛙的位置决定。

4.2.3 全局信息交换

经过一定次数的局部搜索后,子群内的蛙会与其他子群的蛙进行信息交换,以促进全局搜索。

4.2.4 变异策略

为了增强算法的全局搜索能力,VHSFLA引入了变异策略。变异操作可以随机地改变蛙的某些基因(即作业工序的顺序),从而产生新的解。

4.2.5 终止条件

算法会在满足一定条件时终止,如达到最大迭代次数或解的质量满足要求。

5.完整程序

VVV

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/345695.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

编写后端代码,使用yakit将任意字典进行编码发送,后端解码输出到页面上

挂上代理(小狐狸): yakit中挂上劫持: 编写后端代码: 一个简单的登录代码 访问页面: 给予传参后看yakit劫持了没有 yakit劫持: 将劫持到的数据发送到webFuzzer: 右键选择标签/字典—…

c\c++队列的链式表示(对小白友好)

文章目录 1.链式队列的定义2.初始化3.判断空4.入队5. 出队6.打印全部元素7.源代码 本篇中的链式表示都是带头结点的链式表示。 1.链式队列的定义 typedef struct LinkNode { //链式队列的结点int data;struct LinkNode *next; }LinkNode; typedef struct { //链式…

如何创建以业务为中心的AI?

AI是企业的未来,这一趋势越来越明显。各种AI模型可以帮助企业节省时间、提高效率并增加收入。随着越来越多的企业采用AI,AI很快就不再是一种可有可无的能力,而是企业参与市场竞争的必备能力。 然而,作为一名业务决策者&#xff0c…

pcl之滤波器(二)

pcl滤波器 pcl一共是有十二个主要模块,详细了解可以查看官网。https://pcl.readthedocs.io/projects/tutorials/en/latest/#basic-usage 今天学习一下pcl的滤波器模块。 滤波器模块,官网一共是提供了6个例程,今天看第三个、第四个。 滤波…

(学习日记)2024.01.23:结构体、位操作和枚举类型

写在前面: 由于时间的不足与学习的碎片化,写博客变得有些奢侈。 但是对于记录学习(忘了以后能快速复习)的渴望一天天变得强烈。 既然如此 不如以天为单位,以时间为顺序,仅仅将博客当做一个知识学习的目录&a…

【学网攻】 第(3)节 -- 交换机配置聚合端口

文章目录 【学网攻】 第(1)节 -- 认识网络【学网攻】 第(2)节 -- 交换机认识及使用 前言 网络已经成为了我们生活中不可或缺的一部分,它连接了世界各地的人们,让信息和资源得以自由流动。随着互联网的发展,我们可以通过网络学习、工作、娱乐…

最新综述!3D Gaussian Splatting

作者:小柠檬 | 来源:3DCV 在公众号「3DCV」后台,回复「原论文」可获取论文 文章介绍了3D高斯喷洒在场景重建和渲染中的应用,并探讨了其在机器学习和计算机视觉领域的潜在应用。文章还提供了3D高斯喷洒的基本原理和优化方法&#x…

MoEs学习

和多任务学习的mmoe很像哦(有空再学习一下)moe layer的起源:Switch Transformers paper MoE moe由两个结构组成: Moe Layer :这些层代替了传统 Transformer 模型中的前馈网络 (FFN) 层。MoE 层包含若干“专家”(例如…

解读顺网算力与AI,破局AIGC落地“最后一公里”

全球知名AI科学家吴恩达和李飞飞在CES 2024上预测,2024年将是AI技术继续深化的一年,将成为下一次数字或工业革命真正的变革性驱动力。吴恩达还预测了2024年AI可能的突破性进展,其中包括边缘AI。吴恩达对边缘AI寄予厚望,他认为在笔…

luceda ipkiss教程 57:画微环调制器

案例分享:画微环调制器 全部代码如下: from si_fab import all as pdk from ipkiss3 import all as i3class DC(i3.PCell):straight_length i3.PositiveNumberProperty(default200)radius i3.PositiveNumberProperty(default50)spacing i3.Positive…

坚持刷题 |对称二叉树

文章目录 题目考察点代码实现实现总结扩展用迭代的方式判断是否为对称二叉树递归和迭代的对比可能的扩展提问 坚持刷题,老年痴呆追不上我,今天真的好累,就不难为自己了,刷个简单级别的吧:对称二叉树 题目 101.对称二叉…

Scapy编程指南(基础概念)

Scapy编程指南(基础概念) Scapy是什么 Scapy是Python中一个非常强大的库,它专门用于处理、发送和捕获网络协议中的数据包,它允许开发人员通过Python代码构建、解析和发送自定义网络协议的数据包。Scapy提供了一种直观、灵活的方…

luffy商城项目(二)

路飞后端配置 二次封装response drf提供的Response对象,不能很方便的加入code和msg字段,自己封装一个Response类,以后都用我们自己封装的,方便咱们写code和msg 封装步骤: 1 在utils/common_response.py from rest_…

GitLab升级版本(任意用户密码重置漏洞CVE-2023-7028)

目录 前言漏洞分析影响范围查看自己的GitLab版本升级路程 升级过程13.1.1113.8.8 - 14.0.1214.3.614.9.5 - 16.1.6 前言 最近GitLab发了个紧急漏洞需要修复,ok接到命令立刻着手开始修复,在修复之前先大概了解一下这个漏洞是什么东西 漏洞分析 1、组件…

【立创EDA-PCB设计基础】6.布线铺铜实战及细节详解

前言:本文进行布线铺铜实战及详解布线铺铜的细节 在本专栏中【立创EDA-PCB设计基础】前面完成了布线铺铜前的设计规则的设置,接下来进行布线 布局原则是模块化布局(优先布局好确定位置的器件,例如排针、接口、主控芯片&#xff…

《WebKit 技术内幕》学习之十一(2):多媒体

2 视频 2.1 HTML5视频 在HTML5规范定义中,Web开发者可以使用“video”元素来播放视频资源。视频中有个重要的问题就是视频编码格式,对此,目前标准中包含了三种编码格式,它们分别是Ogg、MPEG4和WebM。其中Ogg是由Xiph.org组织开…

(二)CarPlay集成开发之苹果的iAP协议

文章目录 概要协议格式鉴权流程CarPlay中的iAP2协议应用小结 概要 iAP2协议是由苹果公司定义的一种数据通信协议,主要用于苹果设备认证外设,以及与外设数据交换的一种协议 协议格式 协议格式一共分为三种类型,分别为握手包,链路…

「 典型安全漏洞系列 」06.路径遍历(Path Traversal)详解

引言:什么是路径遍历?如何进行路径遍历攻击并规避常见防御?如何防止路径遍历漏洞。 1. 简介 路径遍历(Path Traversal)是一种安全漏洞,也被称为目录遍历或目录穿越、文件路径遍历。它发生在应用程序未正确…

mac电脑安卓文件传输工具:Android File Transfer直装版

Android File Transfer(AFT)是一款用于在Mac操作系统上与Android设备之间传输文件。它允许用户将照片、音乐、视频和其他文件从他们的Android手机或平板电脑传输到Mac电脑,以及将文件从Mac上传到Android设备。 下载地址:https://w…

【立创EDA-PCB设计基础完结】7.DRC设计规则检查+优化与丝印调整+打样与PCB生产进度跟踪

前言:本文为PCB设计基础的最后一讲,在本专栏中【立创EDA-PCB设计基础】前面已经将所有网络布线铺铜好了,接下来进行DRC设计规则检查优化与丝印调整打样与PCB生产进度跟踪 目录 1.DRC设计规则检查 2.优化与丝印调整 1.过孔连接优化 2.泪滴…