深入分析 Linux 网络丢包问题

热门IT课程【视频教程】-华为/思科/红帽/oracleicon-default.png?t=N7T8https://xmws-it.blog.csdn.net/article/details/134398330

所谓丢包,是指在网络数据的收发过程中,由于种种原因,数据包还没传输到应用程序中,就被丢弃了。这些被丢弃包的数量,除以总的传输包数,也就是我们常说的丢包率。丢包率是网络性能中最核心的指标之一。丢包通常会带来严重的性能下降,特别是对 TCP 来说,丢包通常意味着网络拥塞和重传,进而还会导致网络延迟增大、吞吐降低。

一、 哪里可能丢包

接下来,我就以最常用的反向代理服务器 Nginx 为例,带你一起看看如何分析网络丢包的问题。执行下面的 hping3 命令,进一步验证 Nginx 是不是可以正常访问。这里我没有使用 ping,是因为 ping 基于 ICMP 协议,而 Nginx 使用的是 TCP 协议。

# -c表示发送10个请求,-S表示使用TCP SYN,-p指定端口为80
hping3 -c 10 -S -p 80 192.168.0.30
 
HPING 192.168.0.30 (eth0 192.168.0.30): S set, 40 headers + 0 data bytes
len=44 ip=192.168.0.30 ttl=63 DF id=0 sport=80 flags=SA seq=3 win=5120 rtt=7.5 ms
len=44 ip=192.168.0.30 ttl=63 DF id=0 sport=80 flags=SA seq=4 win=5120 rtt=7.4 ms
len=44 ip=192.168.0.30 ttl=63 DF id=0 sport=80 flags=SA seq=5 win=5120 rtt=3.3 ms
len=44 ip=192.168.0.30 ttl=63 DF id=0 sport=80 flags=SA seq=7 win=5120 rtt=3.0 ms
len=44 ip=192.168.0.30 ttl=63 DF id=0 sport=80 flags=SA seq=6 win=5120 rtt=3027.2 ms
 
--- 192.168.0.30 hping statistic ---
10 packets transmitted, 5 packets received, 50% packet loss
round-trip min/avg/max = 3.0/609.7/3027.2 ms

从 hping3 的输出中,我们可以发现,发送了 10 个请求包,却只收到了 5 个回复,50%的包都丢了。再观察每个请求的 RTT 可以发现,RTT 也有非常大的波动变化,小的时候只有 3ms,而大的时候则有 3s。根据这些输出,我们基本能判断,已经发生了丢包现象。可以猜测,3s 的 RTT ,很可能是因为丢包后重传导致的。

那到底是哪里发生了丢包呢?排查之前,我们可以回忆一下 Linux 的网络收发流程,先从理论上分析,哪里有可能会发生丢包。你不妨拿出手边的笔和纸,边回忆边在纸上梳理,思考清楚再继续下面的内容。在这里,为了帮你理解网络丢包的原理,我画了一张图,你可以保存并打印出来使用

从图中你可以看出,可能发生丢包的位置,实际上贯穿了整个网络协议栈。换句话说,全程都有丢包的可能。

  • 在两台 VM 连接之间,可能会发生传输失败的错误,比如网络拥塞、线路错误等;

  • 在网卡收包后,环形缓冲区可能会因为溢出而丢包;

  • 在链路层,可能会因为网络帧校验失败、QoS 等而丢包;

  • 在 IP 层,可能会因为路由失败、组包大小超过 MTU 等而丢包;

  • 在传输层,可能会因为端口未监听、资源占用超过内核限制等而丢包;

  • 在套接字层,可能会因为套接字缓冲区溢出而丢包;

  • 在应用层,可能会因为应用程序异常而丢包;

  • 此外,如果配置了 iptables 规则,这些网络包也可能因为 iptables过滤规则而丢包

当然,上面这些问题,还有可能同时发生在通信的两台机器中。不过,由于我们没对 VM2做任何修改,并且 VM2 也只运行了一个最简单的 hping3 命令,这儿不妨假设它是没有问题的。为了简化整个排查过程,我们还可以进一步假设, VM1 的网络和内核配置也没问题。接下来,就可以从协议栈中,逐层排查丢包问题。

二、 链路层

当链路层由于缓冲区溢出等原因导致网卡丢包时,Linux 会在网卡收发数据的统计信息中记录下收发错误的次数。可以通过 ethtool 或者 netstat ,来查看网卡的丢包记录。

netstat -i
 
Kernel Interface table
Iface      MTU    RX-OK RX-ERR RX-DRP RX-OVR    TX-OK TX-ERR TX-DRP TX-OVR Flg
eth0       100       31      0      0 0             8      0      0      0 BMRU
lo       65536        0      0      0 0             0      0      0      0 LRU

RX-OK、RX-ERR、RX-DRP、RX-OVR ,分别表示接收时的总包数、总错误数、进入 Ring Buffer 后因其他原因(如内存不足)导致的丢包数以及 Ring Buffer 溢出导致的丢包数。

TX-OK、TX-ERR、TX-DRP、TX-OVR 也代表类似的含义,只不过是指发送时对应的各个指标。

这里我们没有发现任何错误,说明虚拟网卡没有丢包。不过要注意,如果用 tc 等工具配置了 QoS,那么 tc 规则导致的丢包,就不会包含在网卡的统计信息中。所以接下来,我们还要检查一下 eth0 上是否配置了 tc 规则,并查看有没有丢包。添加 -s 选项,以输出统计信息:

tc -s qdisc show dev eth0
 
qdisc netem 800d: root refcnt 2 limit 1000 loss 30%
 Sent 432 bytes 8 pkt (dropped 4, overlimits 0 requeues 0)
 backlog 0b 0p requeues 0

可以看到, eth0 上配置了一个网络模拟排队规则(qdisc netem),并且配置了丢包率为 30%(loss 30%)。再看后面的统计信息,发送了 8 个包,但是丢了 4个。看来应该就是这里导致 Nginx 回复的响应包被 netem 模块给丢了。

既然发现了问题,解决方法也很简单,直接删掉 netem 模块就可以了。执行下面的命令,删除 tc 中的 netem 模块:

tc qdisc del dev eth0 root netem loss 30%

删除后,重新执行之前的 hping3 命令,看看现在还有没有问题:

hping3 -c 10 -S -p 80 192.168.0.30
 
HPING 192.168.0.30 (eth0 192.168.0.30): S set, 40 headers + 0 data bytes
len=44 ip=192.168.0.30 ttl=63 DF id=0 sport=80 flags=SA seq=0 win=5120 rtt=7.9 ms
len=44 ip=192.168.0.30 ttl=63 DF id=0 sport=80 flags=SA seq=2 win=5120 rtt=1003.8 ms
len=44 ip=192.168.0.30 ttl=63 DF id=0 sport=80 flags=SA seq=5 win=5120 rtt=7.6 ms
len=44 ip=192.168.0.30 ttl=63 DF id=0 sport=80 flags=SA seq=6 win=5120 rtt=7.4 ms
len=44 ip=192.168.0.30 ttl=63 DF id=0 sport=80 flags=SA seq=9 win=5120 rtt=3.0 ms
 
--- 192.168.0.30 hping statistic ---
10 packets transmitted, 5 packets received, 50% packet loss
round-trip min/avg/max = 3.0/205.9/1003.8 ms

不幸的是,从 hping3 的输出中可以看到还是 50% 的丢包,RTT 的波动也仍旧很大,从 3ms 到 1s。显然,问题还是没解决,丢包还在继续发生。不过,既然链路层已经排查完了,我们就继续向上层分析,看看网络层和传输层有没有问题。

三、 网络层和传输层

在网络层和传输层中,引发丢包的因素非常多。不过,其实想确认是否丢包,是非常简单的事,因为 Linux 已经为我们提供了各个协议的收发汇总情况。执行 netstat -s 命令,可以看到协议的收发汇总,以及错误信息:

netstat -s
#输出
Ip:
    Forwarding: 1          //开启转发
    31 total packets received    //总收包数
    0 forwarded            //转发包数
    0 incoming packets discarded  //接收丢包数
    25 incoming packets delivered  //接收的数据包数
    15 requests sent out      //发出的数据包数
Icmp:
    0 ICMP messages received    //收到的ICMP包数
    0 input ICMP message failed    //收到ICMP失败数
    ICMP input histogram:
    0 ICMP messages sent      //ICMP发送数
    0 ICMP messages failed      //ICMP失败数
    ICMP output histogram:
Tcp:
    0 active connection openings  //主动连接数
    0 passive connection openings  //被动连接数
    11 failed connection attempts  //失败连接尝试数
    0 connection resets received  //接收的连接重置数
    0 connections established    //建立连接数
    25 segments received      //已接收报文数
    21 segments sent out      //已发送报文数
    4 segments retransmitted    //重传报文数
    0 bad segments received      //错误报文数
    0 resets sent          //发出的连接重置数
Udp:
    0 packets received
    ...
TcpExt:
    11 resets received for embryonic SYN_RECV sockets  //半连接重置数
    0 packet headers predicted
    TCPTimeouts: 7    //超时数
    TCPSynRetrans: 4  //SYN重传数
  ...

etstat 汇总了 IP、ICMP、TCP、UDP 等各种协议的收发统计信息。不过,我们的目的是排查丢包问题,所以这里主要观察的是错误数、丢包数以及重传数。可以看到,只有 TCP 协议发生了丢包和重传,分别是:

  • 11 次连接失败重试(11 failed connection attempts)

  • 4 次重传(4 segments retransmitted)

  • 11 次半连接重置(11 resets received for embryonic SYN_RECV sockets)

  • 4 次 SYN 重传(TCPSynRetrans)

  • 7 次超时(TCPTimeouts)

这个结果告诉我们,TCP 协议有多次超时和失败重试,并且主要错误是半连接重置。换句话说,主要的失败,都是三次握手失败。不过,虽然在这儿看到了这么多失败,但具体失败的根源还是无法确定。所以,我们还需要继续顺着协议栈来分析。接下来的几层又该如何分析呢?

四、 iptables

首先,除了网络层和传输层的各种协议,iptables 和内核的连接跟踪机制也可能会导致丢包。所以,这也是发生丢包问题时我们必须要排查的一个因素。

先来看看连接跟踪,要确认是不是连接跟踪导致的问题,只需要对比当前的连接跟踪数和最大连接跟踪数即可。

# 主机终端中查询内核配置
$ sysctl net.netfilter.nf_conntrack_max
net.netfilter.nf_conntrack_max = 262144
$ sysctl net.netfilter.nf_conntrack_count
net.netfilter.nf_conntrack_count = 182

可以看到,连接跟踪数只有 182,而最大连接跟踪数则是 262144。显然,这里的丢包,不可能是连接跟踪导致的。

接着,再来看 iptables。回顾一下 iptables 的原理,它基于 Netfilter 框架,通过一系列的规则,对网络数据包进行过滤(如防火墙)和修改(如 NAT)。这些 iptables 规则,统一管理在一系列的表中,包括 filter、nat、mangle(用于修改分组数据) 和 raw(用于原始数据包)等。而每张表又可以包括一系列的链,用于对 iptables 规则进行分组管理。

对于丢包问题来说,最大的可能就是被 filter 表中的规则给丢弃了。要弄清楚这一点,就需要我们确认,那些目标为 DROP 和 REJECT 等会弃包的规则,有没有被执行到。可以直接查询 DROP 和 REJECT 等规则的统计信息,看看是否为0。如果不是 0 ,再把相关的规则拎出来进行分析。

iptables -t filter -nvL
#输出
Chain INPUT (policy ACCEPT 25 packets, 1000 bytes)
 pkts bytes target     prot opt in     out     source               destination
    6   240 DROP       all  --  *      *       0.0.0.0/0            0.0.0.0/0            statistic mode random probability 0.29999999981
 
Chain FORWARD (policy ACCEPT 0 packets, 0 bytes)
 pkts bytes target     prot opt in     out     source               destination
 
Chain OUTPUT (policy ACCEPT 15 packets, 660 bytes)
 pkts bytes target     prot opt in     out     source               destination
    6   264 DROP       all  --  *      *       0.0.0.0/0            0.0.0.0/0            statistic mode random probability 0.29999999981

从 iptables 的输出中,你可以看到,两条 DROP 规则的统计数值不是 0,它们分别在INPUT 和 OUTPUT 链中。这两条规则实际上是一样的,指的是使用 statistic 模块,进行随机 30% 的丢包。0.0.0.0/0 表示匹配所有的源 IP 和目的 IP,也就是会对所有包都进行随机 30% 的丢包。看起来,这应该就是导致部分丢包的“罪魁祸首”了。

执行下面的两条 iptables 命令,删除这两条 DROP 规则。

root@nginx:/# iptables -t filter -D INPUT -m statistic --mode random --probability 0.30 -j DROP
root@nginx:/# iptables -t filter -D OUTPUT -m statistic --mode random --probability 0.30 -j DROP

再次执行刚才的 hping3 命令,看看现在是否正常

hping3 -c 10 -S -p 80 192.168.0.30
#输出
HPING 192.168.0.30 (eth0 192.168.0.30): S set, 40 headers + 0 data bytes
len=44 ip=192.168.0.30 ttl=63 DF id=0 sport=80 flags=SA seq=0 win=5120 rtt=11.9 ms
len=44 ip=192.168.0.30 ttl=63 DF id=0 sport=80 flags=SA seq=1 win=5120 rtt=7.8 ms
...
len=44 ip=192.168.0.30 ttl=63 DF id=0 sport=80 flags=SA seq=9 win=5120 rtt=15.0 ms
 
--- 192.168.0.30 hping statistic ---
10 packets transmitted, 10 packets received, 0% packet loss
round-trip min/avg/max = 3.3/7.9/15.0 ms

这次输出你可以看到,现在已经没有丢包了,并且延迟的波动变化也很小。看来,丢包问题应该已经解决了。

不过,到目前为止,我们一直使用的 hping3 工具,只能验证案例 Nginx 的 80 端口处于正常监听状态,却还没有访问 Nginx 的 HTTP 服务。所以,不要匆忙下结论结束这次优化,我们还需要进一步确认,Nginx 能不能正常响应 HTTP 请求。我们继续在终端二中,执行如下的 curl 命令,检查 Nginx 对 HTTP 请求的响应:

$ curl --max-time 3 http://192.168.0.30
curl: (28) Operation timed out after 3000 milliseconds with 0 bytes received

奇怪,hping3 的结果显示Nginx 的 80 端口是正常状态,为什么还是不能正常响应 HTTP 请求呢?别忘了,我们还有个大杀器——抓包操作。看来有必要抓包看看了。

五、 tcpdump

执行下面的 tcpdump 命令,抓取 80 端口的包

tcpdump -i eth0 -nn port 80
#输出
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on eth0, link-type EN10MB (Ethernet), capture size 262144 bytes

然后,切换到终端二中,再次执行前面的 curl 命令:

curl --max-time 3 http://192.168.0.30
curl: (28) Operation timed out after 3000 milliseconds with 0 bytes received

等到 curl 命令结束后,再次切换回终端一,查看 tcpdump 的输出:

14:40:00.589235 IP 10.255.255.5.39058 > 172.17.0.2.80: Flags [S], seq 332257715, win 29200, options [mss 1418,sackOK,TS val 486800541 ecr 0,nop,wscale 7], length 0
14:40:00.589277 IP 172.17.0.2.80 > 10.255.255.5.39058: Flags [S.], seq 1630206251, ack 332257716, win 4880, options [mss 256,sackOK,TS val 2509376001 ecr 486800541,nop,wscale 7], length 0
14:40:00.589894 IP 10.255.255.5.39058 > 172.17.0.2.80: Flags [.], ack 1, win 229, options [nop,nop,TS val 486800541 ecr 2509376001], length 0
14:40:03.589352 IP 10.255.255.5.39058 > 172.17.0.2.80: Flags [F.], seq 76, ack 1, win 229, options [nop,nop,TS val 486803541 ecr 2509376001], length 0
14:40:03.589417 IP 172.17.0.2.80 > 10.255.255.5.39058: Flags [.], ack 1, win 40, options [nop,nop,TS val 2509379001 ecr 486800541,nop,nop,sack 1 {76:77}], length 0

从 tcpdump 的输出中,我们就可以看到:

  • 前三个包是正常的 TCP 三次握手,这没问题;

  • 但第四个包却是在 3 秒以后了,并且还是客户端(VM2)发送过来的 FIN 包,说明客户端的连接关闭了

根据 curl 设置的 3 秒超时选项,你应该能猜到,这是因为 curl 命令超时后退出了。用 Wireshark 的 Flow Graph 来表示,

你可以更清楚地看到上面这个问题:

图片

这里比较奇怪的是,我们并没有抓取到 curl 发来的 HTTP GET 请求。那究竟是网卡丢包了,还是客户端就没发过来呢?

可以重新执行 netstat -i 命令,确认一下网卡有没有丢包问题:

netstat -i
 
Kernel Interface table
Iface      MTU    RX-OK RX-ERR RX-DRP RX-OVR    TX-OK TX-ERR TX-DRP TX-OVR Flg
eth0       100      157      0    344 0            94      0      0      0 BMRU
lo       65536        0      0      0 0             0      0      0      0 LRU

从 netstat 的输出中,你可以看到,接收丢包数(RX-DRP)是 344,果然是在网卡接收时丢包了。不过问题也来了,为什么刚才用 hping3 时不丢包,现在换成 GET 就收不到了呢?还是那句话,遇到搞不懂的现象,不妨先去查查工具和方法的原理。我们可以对比一下这两个工具:

  • hping3 实际上只发送了 SYN 包;

  • curl 在发送 SYN 包后,还会发送 HTTP GET 请求。HTTP GET本质上也是一个 TCP 包,但跟 SYN 包相比,它还携带了 HTTP GET 的数据。

通过这个对比,你应该想到了,这可能是 MTU 配置错误导致的。为什么呢?

其实,仔细观察上面 netstat 的输出界面,第二列正是每个网卡的 MTU 值。eth0 的 MTU只有 100,而以太网的 MTU 默认值是 1500,这个 100 就显得太小了。当然,MTU 问题是很好解决的,把它改成 1500 就可以了。

ifconfig eth0 mtu 1500

修改完成后,再切换到终端二中,再次执行 curl 命令,确认问题是否真的解决了:

curl --max-time 3 http://192.168.0.30/
#输出
<!DOCTYPE html>
<html>
...
<p><em>Thank you for using nginx.</em></p>
</body>
</html>

非常不容易呀,这次终于看到了熟悉的 Nginx 响应,说明丢包的问题终于彻底解决了。

1

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/344016.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【分布式技术专题】「分布式技术架构」 探索Tomcat技术架构设计模式的奥秘(Server和Service组件原理分析)

探索Tomcat技术架构设计模式的奥秘 Tomcat系统架构分析Tomcat 整体结构Tomcat总体结构图以 Service 作为“婚姻”1) Service 接口方法列表 2) StandardService 的类结构图方法列表 3) StandardService. SetContainer4) StandardService. addConnector 以 Server 为“居”1) Ser…

nvm 配置淘宝镜像失效,以及安装node后 npm-v 无效

win11 nvm版本 1.1.4 和1.1.7和1.1.12&#xff08;目前最新版本24年 一月二十三日&#xff09; 以上nvm版本都会出现一下问题&#xff0c; 从https://github.com/coreybutler/nvm-windows/releases 下载nvm安装包如下图 傻瓜式安装后&#xff0c;不用去配置环境变量&#…

冰箱和小型制冷系统毛细管选型计算软件介绍

这是一款比较实用的软件&#xff0c;可以快速根据制冷剂类型、制冷量、蒸发温度、冷凝温度、回气温度大致确定毛细管内径和长度。可以根据不同的内径选择对应的长度&#xff0c;通常内径越小长度也会越短。可以选择的冷媒类型 可以设置个人喜好的单位 对于初学者可以使用该软件…

router4j--SpringCloud动态路由利器

前言 本文介绍Java的动态路由中间件&#xff1a;router4j。router4j用于SpringCloud项目&#xff0c;它可以将某个url请求路由到指定的机器上&#xff0c;也可以将所有请求强制转到指定机器。 问题描述 Java后端在开发SpringCloud项目时如果同一个应用起了多个实例&#xff…

UE5.2、CesiumForUnreal实现加载GeoJson绘制单面

文章目录 前言一、实现目标二、实现过程1.实现原理2.数据读取3.三角剖分3.具体代码 4.蓝图测试 前言 UE5、CesiumForUnreal实现加载GeoJson绘制单面&#xff08;Polygon&#xff09;功能&#xff08;StaticMesh方式&#xff09; 一、实现目标 通过读取本地的Geojson数据&…

6.go 库源码文件

目录 概述总结例子代码结构代码执行结果 结束 概述 库源码文件是不能被直接运行的源码文件&#xff0c;它仅用于存放程序实体&#xff0c;这些程序实体可以被其他代码使用&#xff08;只要遵从 Go 语言规范的话&#xff09; 那么程序实体是什么呢&#xff1f;在 Go 语言中&…

深度强化学习Task3:A2C、A3C算法

本篇博客是本人参加Datawhale组队学习第三次任务的笔记 【教程地址】 文章目录 Actor-Critic 算法提出的动机Q Actor-Critic 算法A2C 与 A3C 算法广义优势估计A3C实现建立Actor和Critic网络定义智能体定义环境训练利用JoyRL实现多进程 练习总结 Actor-Critic 算法提出的动机 蒙…

基于springboot+vue的网上租赁系统(前后端分离)

博主主页&#xff1a;猫头鹰源码 博主简介&#xff1a;Java领域优质创作者、CSDN博客专家、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战 主要内容&#xff1a;毕业设计(Javaweb项目|小程序等)、简历模板、学习资料、面试题库、技术咨询 文末联系获取 研究背景…

浪花 - 查询队伍列表

一、接口设计 1. 请求参数&#xff1a;封装 TeamQuery package com.example.usercenter.model.dto;import com.example.usercenter.common.PageRequest; import lombok.Data;/*** author 乐小鑫* version 1.0* Date 2024-01-22-20:14*/ Data public class TeamQuery extends …

助力医疗数字化转型,贝锐x医百科技案例解析

在医疗数字化这个历史进程的大浪潮中&#xff0c;医药企业扮演着重要的角色&#xff0c;其重要程度恐怕仅次于医疗机构本身。同时&#xff0c;数字化转型对于医药企业的赋能作用也是十分明显的&#xff0c;尤其在营销端&#xff0c;一系列的数字化管理、数字化推广方案已经成为…

Windows下安装达梦8开发版数据库

达梦数据库属于国产主流数据库之一&#xff0c;本文记录WIndows下安装最新的达梦8数据库的过程。   达梦官网&#xff08;参考文献1&#xff09;下载开发版&#xff08;X86平台&#xff09;版安装包&#xff0c;如下图所示&#xff1a; 解压安装包后&#xff0c;其中包含ISO文…

Neo4j基本用法

Neo4j基本用法 找到电影的示例点开 跳到2&#xff0c;然后点击提供的示例代码&#xff0c;会自动复制粘贴到上方的控制台&#xff0c;然后点击执行按钮 当我们点击了执行以后&#xff0c;会得到如下的基本图模型 将指示器跳到3&#xff0c;然后点击第一个查询语句 同样地&…

虚拟机网络配置及Moba工具的使用

A、设置IP和网关 1、设置IP [roothadoop00 ~]# vi /etc/sysconfig/network-scripts/ifcfg-eth0 &#xff08;修改如下标红内容&#xff0c;没有的就添加&#xff09; DEVICEeth0 HWADDR08:00:27:BD:9D:B5 #不用改 TYPEEthernet UUID53e4e4b6-9724-43ab-9da7-68792e611031…

人类行为动作数据集大合集

最近收集了一大波关于人类行为动作的数据集&#xff0c;主要包括&#xff1a;动作识别、行为识别、活动预测、动作行为分类等数据集。废话不多说&#xff0c;接下来就给大家介绍这些数据集&#xff01;&#xff01; 1、用于自动视频编辑的视频Blooper数据集 用于自动视频编辑…

助力工业焊缝质量检测,YOLOv7【tiny/l/x】不同系列参数模型开发构建工业焊接场景下工件表面焊接缺陷检测识别分析系统

焊接是一个不陌生但是对于开发来说相对小众的场景&#xff0c;在工件表面焊接场景下常常有对工件表面缺陷智能自动化检测识别的需求&#xff0c;工业AI结合落地是一个比较有潜力的场景&#xff0c;在我们前面的博文开发实践中也有一些相关的实践&#xff0c;感兴趣的话可以自行…

python-分享篇-时钟

文章目录 代码效果 代码 Function:Python制作简易时钟 Author:Charles 微信公众号:TONOWimport turtle import datetime悬空移动 def move(distance):turtle.penup()turtle.forward(distance)turtle.pendown()创建表针turtle def createHand(name, length):turtle.reset()move(…

【开源】基于JAVA的班级考勤管理系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 系统基础支持模块2.2 班级学生教师支持模块2.3 考勤签到管理2.4 学生请假管理 三、系统设计3.1 功能设计3.1.1 系统基础支持模块3.1.2 班级学生教师档案模块3.1.3 考勤签到管理模块3.1.4 学生请假管理模块 3.2 数据库设…

C++PythonC# 三语言OpenCV从零开发(3):图像读取和显示

文章目录 相关链接前言Mat是什么读取图片CC#Python 灰度处理CCSharpPython 打印图像信息CCsharpPython 总结 相关链接 C&Python&Csharp in OpenCV 专栏 【2022B站最好的OpenCV课程推荐】OpenCV从入门到实战 全套课程&#xff08;附带课程课件资料课件笔记&#xff09; …

C#winform上位机开发学习笔记11-串口助手接收数据用波形显示功能添加

1.功能描述 接收串口数据&#xff0c;并将收到的十六进制数据用坐标系的方式将数据波形展示出来 2.代码部分 步骤1&#xff1a;定义链表&#xff0c;用于数据保存 //数据结构-线性链表private List<byte> DataList new List<byte>(); 步骤2&#xff1a;定义波…

消息中间件之Kafka(一)

1.简介 高性能的消息中间件&#xff0c;在大数据的业务场景下性能比较好&#xff0c;kafka本身不维护消息位点&#xff0c;而是交由Consumer来维护&#xff0c;消息可以重复消费&#xff0c;并且内部使用了零拷贝技术&#xff0c;性能比较好 Broker持久化消息时采用了MMAP的技…