深度强化学习Task3:A2C、A3C算法

本篇博客是本人参加Datawhale组队学习第三次任务的笔记
【教程地址】

文章目录

  • Actor-Critic 算法提出的动机
  • Q Actor-Critic 算法
  • A2C 与 A3C 算法
  • 广义优势估计
  • A3C实现
    • 建立Actor和Critic网络
    • 定义智能体
    • 定义环境
    • 训练
    • 利用JoyRL实现多进程
  • 练习
  • 总结

Actor-Critic 算法提出的动机

蒙特卡洛策略梯度算法和基于价值的DQN族算法的优缺点在深度强化学习Task2:策略梯度算法中已经介绍过了。Actor-Critic 算法提出的主要目的是为了:

  1. 结合两类算法的优点
  2. 缓解两种方法都很难解决的高方差问题

策略梯度算法是因为直接对策略参数化,相当于既要利用策略去与环境交互采样,又要利用采样去估计策略梯度
基于价值的算法也是需要与环境交互采样来估计值函数的,因此也会有高方差的问题

Q Actor-Critic 算法

目标函数:类比Q函数, 利用Critic 网络来估计价值。
在这里插入图片描述

Actor-Critic算法的基本通用架构

  • Actor与环境交互采样,然后将采样的轨迹输入Critic网络
  • Critic网络估计出当前状态-动作对的价值
  • 根据价值更新Actor网络的梯度

在这里插入图片描述

A2C 与 A3C 算法

为了进一步缓解高方差问题,A2C中引入一个优势函数 A π ( s t , a t ) A^\pi(s_t,a_t) Aπ(st,at),计算方式如下:
A π ( s t , a t ) = Q π ( s t , a t ) − V π ( s t ) A^\pi(s_t,a_t)=Q^\pi(s_t,a_t)-V^\pi(s_t) Aπ(st,at)=Qπ(st,at)Vπ(st)

优势函数可以理解为在给定状态 s t s_t st下,选择动作 a t a_t at相对于平均水平的优势。如果优势为正,则说明选择这个动作比平均水平要好,反之如果为负则说明选择这个动作比平均水平要差。

将优势函数带入原目标函数中得到的结果如下:
在这里插入图片描述
原先的 A2C 算法相当于只有一个全局网络并持续与环境交互更新。而 A3C算法中增加了多个进程,每一个进程都拥有一个独立的网络和环境以供交互,并且每个进程每隔一段时间都会将自己的参数同步到全局网络中,这样就能提高训练效率。
该算法结合了几个关键思想:

  • 一种更新方案:对固定长度的经验段(比如20个时间步长)进行操作,并使用这些段来计算收益和优势函数的估计值
  • 在策略和价值功能之间共享层的体系结构
  • 异步更新

在这里插入图片描述

通过查阅Open AI的相关博客发现,A2C的同步版本比异步版本(即A3C)要好。当使用单 GPU 机器时,这个 A2C 实现比 A3C 更具成本效益,当使用更大的策略时,它比仅使用 CPU 的 A3C 实现更快。具体内容可以查看:LEARNING TO REINFORCEMENT LEARN

广义优势估计

在介绍广义优势估计之前,我们先回顾一下时序差分蒙特卡洛方法

  • 时序差分方法可以在线学习,每走一步就可以更新,效率高。蒙特卡洛方法必须等游戏结束时才可以学习。
  • 时序差分方法可以从不完整序列上进行学习。蒙特卡洛方法只能从完整的序列上进行学习。
  • 时序差分方法可以在连续的环境下(没有终止)进行学习。蒙特卡洛方法只能在有终止的情况下学习。
  • 时序差分方法利用了马尔可夫性质,在马尔可夫环境下有更高的学习效率。蒙特卡洛方法没有假设环境具有马尔可夫性质,利用采样的价值来估计某个状态的价值,在不是马尔可夫的环境下更加有效。
    在这里插入图片描述
    时序差分能有效解决高方差问题但是是有偏估计,而蒙特卡洛是无偏估计但是会带来高方差问题,因此通常会结合这两个方法形成一种新的估计方式,我们称之为广义优势估计( GAE \text{GAE} GAE)。

A G A E ( γ , λ ) ( s t , a t ) = ∑ l = 0 ∞ ( γ λ ) l δ t + l = ∑ l = 0 ∞ ( γ λ ) l ( r t + l + γ V π ( s t + l + 1 ) − V π ( s t + l ) ) \begin{aligned} A^{\mathrm{GAE}(\gamma, \lambda)}(s_t, a_t) &= \sum_{l=0}^{\infty}(\gamma \lambda)^l \delta_{t+l} \\ &= \sum_{l=0}^{\infty}(\gamma \lambda)^l \left(r_{t+l} + \gamma V^\pi(s_{t+l+1}) - V^\pi(s_{t+l})\right) \end{aligned} AGAE(γ,λ)(st,at)=l=0(γλ)lδt+l=l=0(γλ)l(rt+l+γVπ(st+l+1)Vπ(st+l))

其中 δ t + l \delta_{t+l} δt+l 表示时间步 t + l t+l t+l 时的 TD \text{TD} TD 误差。

δ t + l = r t + l + γ V π ( s t + l + 1 ) − V π ( s t + l ) \begin{aligned} \delta_{t+l} = r_{t+l} + \gamma V^\pi(s_{t+l+1}) - V^\pi(s_{t+l}) \end{aligned} δt+l=rt+l+γVπ(st+l+1)Vπ(st+l)

\qquad λ = 0 \lambda = 0 λ=0 时, GAE \text{GAE} GAE退化为单步 TD \text{TD} TD 误差:

A G A E ( γ , 0 ) ( s t , a t ) = δ t = r t + γ V π ( s t + 1 ) − V π ( s t ) \begin{aligned} A^{\mathrm{GAE}(\gamma, 0)}(s_t, a_t) = \delta_t = r_t + \gamma V^\pi(s_{t+1}) - V^\pi(s_t) \end{aligned} AGAE(γ,0)(st,at)=δt=rt+γVπ(st+1)Vπ(st)

\qquad λ = 1 \lambda = 1 λ=1 时, GAE \text{GAE} GAE 退化为蒙特卡洛估计:

A G A E ( γ , 1 ) ( s t , a t ) = ∑ l = 0 ∞ ( γ λ ) l δ t + l = ∑ l = 0 ∞ ( γ ) l δ t + l \begin{aligned} A^{\mathrm{GAE}(\gamma, 1)}(s_t, a_t) = \sum_{l=0}^{\infty}(\gamma \lambda)^l \delta_{t+l} = \sum_{l=0}^{\infty}(\gamma)^l \delta_{t+l} \end{aligned} AGAE(γ,1)(st,at)=l=0(γλ)lδt+l=l=0(γ)lδt+l

A3C实现

import torch
import os
import random
import seaborn as sns
import gymnasium as gym
import torch.optim as optim
import torch.nn as nn
import torch.nn.functional as F
import matplotlib.pyplot as plt
import numpy as np
from collections import deque
from torch.distributions import Categorical
from multiprocessing import Process, Pipe
from multiprocessing_env import SubprocVecEnv

建立Actor和Critic网络

这里针对简单的环境建立一个ActorCritic网络,并且只针对离散动作空间进行处理,演员和评论家共享参数

class ActorCritic(nn.Module):
    ''' A2C网络模型,包含一个Actor和Critic
    '''
    def __init__(self, input_dim, output_dim, hidden_dim):
        super(ActorCritic, self).__init__()
        self.critic = nn.Sequential(
            nn.Linear(input_dim, hidden_dim),
            nn.ReLU(),
            nn.Linear(hidden_dim, 1)
        )
        
        self.actor = nn.Sequential(
            nn.Linear(input_dim, hidden_dim),
            nn.ReLU(),
            nn.Linear(hidden_dim, output_dim),
            nn.Softmax(dim=1),
        )
        
    def forward(self, x):
        value = self.critic(x)
        probs = self.actor(x)
        return probs, value # 返回动作概率分布和价值

定义智能体

首先定义一个缓冲区,用于收集模型展开n_steps的轨迹,环境会根据选取的动作返回新的观测状态、奖励等信息,将这些信息存储在缓冲区中,在A3C算法中,等到智能体执行n步动作之后,将所有信息取出来进行之后的计算。

class PGReplay():
    def __init__(self):
        self.buffer = deque() # 创建缓冲区
    def push(self, transitions):
        self.buffer.append(transitions) # 将收集的信息存放在缓冲区中
    def sample(self):
        batch = list(self.buffer)
        return zip(*batch) # 按数据类别取出
    def clear(self):
        self.buffer.clear() # 清空缓冲区

A3C算法实际上是在A2C算法的基础上实现的,算法原理相同。A2C算法的基本原理是在演员-评论家算法的基础上引入优势函数的概念。评论家是一个函数逼近器,输入当前观测到的状态,输出评分值,也就是 Q Q Q值。而 Q Q Q值实际上可以分解为两部分,即 Q ( s , a ) = A ( s , a ) + V ( s ) Q(s,a)=A(s,a)+V(s) Q(s,a)=A(s,a)+V(s)。其中 A ( s , a ) A(s,a) A(s,a)即为优势函数,评价的是在给定状态下当前选定动作相较于其他动作的好坏,它可以通过采样数据计算得出。A2C算法的核心就在于让评论家学习 A ( s , a ) A(s,a) A(s,a)而不再是学习 Q ( s , a ) Q(s,a) Q(s,a)
损失函数一般分为三项,策略梯度损失值残差策略熵正则

  • 策略梯度损失用于不断优化提升reward
  • 值残差用于使critic网络不断逼近真实的reward
  • 策略熵正则能够为了保证action的多样性,增加智能体探索能力。
class A3C:
    def __init__(self, cfg) -> None:
        self.gamma = cfg.gamma
        self.device = cfg.device
        self.model = ActorCritic(cfg.state_dim, cfg.action_dim, cfg.hidden_dim).to(self.device)
        self.optimizer = optim.Adam(self.model.parameters(), lr = cfg.lr)
        self.memory = PGReplay()
        self.critic_loss_coef = cfg.critic_loss_coef
        self.entropy_coef = cfg.entropy_coef
    def compute_returns(self, next_value, rewards, masks):
        '''计算一个轨迹的累积奖励
        '''
        R = next_value
        returns = []
        for step in reversed(range(len(rewards))):
            R = rewards[step] + self.gamma * R * masks[step]
            returns.insert(0, R)
        return returns
    def sample_action(self,state):
        '''动作采样函数
        '''
        state = torch.tensor(state, device=self.device, dtype=torch.float32)
        probs, value = self.model(state)
        dist = Categorical(probs)
        action = dist.sample() # Tensor([0, 1, 1, 0, ...])
        return dist, value, action
    @torch.no_grad()
    def predict_action(self,state):
        '''预测动作,与动作采样函数功能相同,只是执行该函数时不需要计算梯度
        '''
        state = torch.tensor(state, device=self.device, dtype=torch.float32)
        probs, value = self.model(state)
        dist = Categorical(probs)
        action = dist.sample()
        return action.detach().cpu().numpy()
    def update(self, next_state, entropy):
        log_probs, values, rewards, masks = self.memory.sample() # 从缓冲区中取出信息进行计算
        next_state = torch.tensor(next_state, dtype = torch.float32).to(self.device) # numpy类型转换为tensor类型
        _, next_value = self.model(next_state) # shape: torch.Size([n_envs, 1])
        returns = self.compute_returns(next_value, rewards, masks) # shape: (n_steps, n_envs)
        log_probs = torch.cat(log_probs) # shape: torch.Size([n_steps * n_envs])
        returns = torch.cat(returns).detach() # shape: torch.Size([n_steps * n_envs])
        values = torch.cat(values) # shape: torch.Size([n_steps * n_envs])
        advantages = returns - values # shape: torch.Size([n_steps * n_envs])
        actor_loss = - (log_probs * advantages.detach()).mean() # 计算策略梯度损失
        critic_loss = advantages.pow(2).mean() # 计算值残差
        loss = actor_loss + self.critic_loss_coef * critic_loss - self.entropy_coef * entropy # 总loss
        ## 梯度更新
        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()
        self.memory.clear() # 清空缓冲区

定义环境

在定义环境时,分别定义单个环境和多个并行的环境,用于测试和训练。

def make_envs(env_name):
    '''创建单个环境
    '''
    def __thunk():
        env = gym.make(env_name)
        return env
    return __thunk
def all_seed(seed = 1):
    ''' 万能的seed函数
    '''
    if seed == 0: # 不设置seed
        return 
    np.random.seed(seed)
    random.seed(seed)
    torch.manual_seed(seed) # config for CPU
    torch.cuda.manual_seed(seed) # config for GPU
    os.environ['PYTHONHASHSEED'] = str(seed) # config for python scripts
    # config for cudnn
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False
    torch.backends.cudnn.enabled = False
def env_agent_config(cfg):
    env = gym.make(cfg.env_id) # 创建单个环境
    ## 创建多个并行环境
    envs = [make_envs(cfg.env_id) for i in range(cfg.n_envs)]
    envs = SubprocVecEnv(envs) 
    all_seed(seed=cfg.seed) # 设置随机种子
    state_dim = env.observation_space.shape[0] # 获取网络输入维度
    action_dim = env.action_space.n # 获取策略网络输出维度
    print(f"状态空间维度:{state_dim},动作空间维度:{action_dim}")
    setattr(cfg,"state_dim",state_dim) # 更新state_dim到cfg参数中
    setattr(cfg,"action_dim",action_dim) # 更新action_dim到cfg参数中
    agent = A3C(cfg) # 创建agent实例
    return env, envs, agent

训练

在A3C的训练过程中,通过n_envs定义多个环境,构建多个工作进程,所有的工作进程都会在每个相同的时间步上进行环境交互,经过n_steps步的交互之后,将经验收集后一起计算梯度进行模型更新。需要注意的是,这里在多进程的构建上采用的是同步更新的方法,即在每个时间步上使用的是相同的模型和策略进行交互。

def train(cfg, env, envs, agent):
    ''' 训练
    '''
    print("开始训练!")
    rewards = []  # 记录所有回合的奖励
    steps = [] # 记录所有回合的步数
    sample_count = 0 # 记录智能体总共走的步数
    state, info = envs.reset()  # 重置环境,返回初始状态 
    for i_ep in range(cfg.train_eps):
        ep_reward = 0  # 记录一条轨迹内的奖励
        entropy = 0 # 记录一条轨迹内的交叉熵损失
        for _ in range(cfg.n_steps):
            dist, value, action = agent.sample_action(state)  # 动作采样
            sample_count += 1
            next_state, reward, terminated, truncated , info = envs.step(action.detach().cpu().numpy())  # 更新环境,返回transition
            log_prob = dist.log_prob(action)
            entropy += dist.entropy().mean()
            reward = torch.tensor(reward, dtype = torch.float32).unsqueeze(1).to(cfg.device)
            mask = torch.tensor(1-terminated, dtype = torch.float32).unsqueeze(1).to(cfg.device)
            agent.memory.push((log_prob,value,reward,mask)) # 将transition存储到缓冲区中
            state = next_state  # 更新状态
        agent.update(next_state, entropy) # 更新网络参数
        if sample_count % 200 == 0:
            ep_reward = np.mean([evaluate_env(cfg, env, agent) for _ in range(10)])
            print(f"步数:{sample_count}/{cfg.train_eps*cfg.n_steps},奖励:{ep_reward:.2f}")
            rewards.append(ep_reward)         
    print("完成训练!")
    envs.close()
    return {'rewards':rewards}
def evaluate_env(cfg, env, agent, vis=False):
    state, info = env.reset()
    if vis: env.render()
    terminated = False
    total_reward = 0
    for _ in range(cfg.max_steps):
        state = torch.tensor(state, dtype = torch.float32).unsqueeze(0).to(cfg.device)
        action = agent.predict_action(state)
        next_state, reward, terminated, truncated, _ = env.step(action[0])
        state = next_state
        if vis: env.render()
        total_reward += reward
        if terminated:
            break
    return total_reward
def test(cfg, env, agent):
    print("开始测试!")
    rewards = []  # 记录所有回合的奖励
    steps = [] # 记录所有回合的步数
    for i_ep in range(cfg.test_eps):
        ep_reward = 0  # 记录一回合内的奖励
        ep_step = 0 # 记录一回合智能体一共走的步数
        state, info = env.reset(seed = cfg.seed)  # 重置环境,返回初始状态
        for _ in range(cfg.max_steps):
            ep_step+=1
            state = torch.tensor(state, dtype = torch.float32).unsqueeze(0).to(cfg.device) 
            action = agent.predict_action(state)  # 选择动作
            next_state, reward, terminated, truncated , info = env.step(action[0])  # 更新环境,返回transition
            state = next_state  # 更新下一个状态
            ep_reward += reward  # 累加奖励
            if terminated:
                break
        steps.append(ep_step)
        rewards.append(ep_reward)
        print(f"回合:{i_ep+1}/{cfg.test_eps},奖励:{ep_reward:.2f}")
    print("完成测试")
    env.close()
    return {'rewards':rewards}

设置参数

class Config:
    def __init__(self) -> None:
        self.algo_name = 'A3C' # 算法名称
        self.env_id = 'CartPole-v1' # 环境id
        self.seed = 1 # 随机种子,便于复现,0表示不设置
        self.train_eps = 4000 # 训练的总步数
        self.test_eps = 200 # 测试的总回合数
        self.n_steps = 5 # 更新策略的轨迹长度
        self.max_steps = 200 # 测试时一个回合中能走的最大步数
        self.gamma = 0.99 # 折扣因子
        self.lr= 1e-3 # 网络学习率
        self.critic_loss_coef = 0.5 # 值函数系数值
        self.entropy_coef = 0.001 # 策略熵系数值
        self.hidden_dim = 256 # 网络的隐藏层维度
        self.n_envs = 8 # 并行的环境个数
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测gpu
        
def smooth(data, weight=0.9):  
    '''用于平滑曲线,类似于Tensorboard中的smooth曲线
    '''
    last = data[0] 
    smoothed = []
    for point in data:
        smoothed_val = last * weight + (1 - weight) * point  # 计算平滑值
        smoothed.append(smoothed_val)                    
        last = smoothed_val                                
    return smoothed

def plot_rewards(rewards,cfg, tag='train'):
    ''' 画图
    '''
    sns.set()
    plt.figure()  # 创建一个图形实例,方便同时多画几个图
    plt.title(f"{tag}ing curve on {cfg.device} of {cfg.algo_name} for {cfg.env_id}")
    plt.xlabel('epsiodes')
    plt.plot(rewards, label='rewards')
    plt.plot(smooth(rewards), label='smoothed')
    plt.legend()
    plt.show()

开始训练

# 获取参数
cfg = Config() 
# 训练
env, envs, agent = env_agent_config(cfg)
res_dic = train(cfg, env, envs, agent)
plot_rewards(res_dic['rewards'], cfg, tag="train")  
# 测试
res_dic = test(cfg, env, agent)
plot_rewards(res_dic['rewards'], cfg, tag="test")  # 画出结果

在这里插入图片描述
查看GPU运行状况发现确实是采用了多个进程。

利用JoyRL实现多进程

JoyRL 支持多进程模式,但与矢量化环境不同,JoyRL 的多进程模式可以同时运行多个交互器和学习者。这样做的好处是,如果一个交互者或学习者失败,它不会影响其他交互者或学习者的运行,从而提高训练的稳定性。在 JoyRL 中,多进程模式可以通过将 n _ intertorsn _ learning 设置为大于1的整数来启动,如下所示:

n_interactors: 2
n_learners: 2

请注意,多学习者模式还不支持,即 n _ learning 必须设置为1,多学习者模式将在未来得到支持。

练习

  1. 相比于 REINFORCE \text{REINFORCE} REINFORCE 算法, A2C \text{A2C} A2C 主要的改进点在哪里,为什么能提高速度?
  • 改进点主要有:优势估计:可以更好地区分好的动作和坏的动作,同时减小优化中的方差,从而提高了梯度的精确性,使得策略更新更有效率
  • 使用 Critic \text{Critic} Critic REINFORCE \text{REINFORCE} REINFORCE 通常只使用 Actor \text{Actor} Actor 网络,没有 Critic \text{Critic} Critic 来辅助估计动作的价值,效率更低
  • 并行化:即 A3C \text{A3C} A3C ,允许在不同的环境中并行运行多个 Agent \text{Agent} Agent,每个 Agent \text{Agent} Agent 收集数据并进行策略更新,这样训练速度也会更快。
  1. A2C \text{A2C} A2C 算法是 on-policy \text{on-policy} on-policy 的吗?为什么?

A2C \text{A2C} A2C 在原理上是一个 on-policy \text{on-policy} on-policy算法,首先它使用当前策略的样本数据来更新策略,然后它的优势估计也依赖于当前策略的动作价值估计,并且使用的也是策略梯度方法进行更新,因此是 on-policy \text{on-policy} on-policy 的。但它可以被扩展为支持 off-policy \text{off-policy} off-policy学习,比如引入经验回放,但注意这可能需要更多的调整,以确保算法的稳定性和性能。

总结

本文首先从蒙特卡洛策略梯度算法和基于价值的DQN族算法的缺陷进行切入,引出了Actor-Critic 算法。该算法主要是对Critic 部分进行了改进,在Q Actor-Critic 算法提出的通用框架下,引入一个优势函数,即A2C算法。原先的 A2C算法相当于只有一个全局网络并持续与环境交互更新,而A3C算法中增加了多个进程,使每一个进程都拥有一个独立的网络和环境以供交互,并且每个进程每隔一段时间都会将自己的参数同步到全局网络中,提高了训练效率。之后介绍了广义优势估计着一种通用的模块,它在实践中可以用在任何需要估计优势函数的地方。最后对A2C算法进行了实现,并介绍了JoyRL包实现多进程的方法。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/344008.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

基于springboot+vue的网上租赁系统(前后端分离)

博主主页:猫头鹰源码 博主简介:Java领域优质创作者、CSDN博客专家、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战 主要内容:毕业设计(Javaweb项目|小程序等)、简历模板、学习资料、面试题库、技术咨询 文末联系获取 研究背景…

浪花 - 查询队伍列表

一、接口设计 1. 请求参数:封装 TeamQuery package com.example.usercenter.model.dto;import com.example.usercenter.common.PageRequest; import lombok.Data;/*** author 乐小鑫* version 1.0* Date 2024-01-22-20:14*/ Data public class TeamQuery extends …

助力医疗数字化转型,贝锐x医百科技案例解析

在医疗数字化这个历史进程的大浪潮中,医药企业扮演着重要的角色,其重要程度恐怕仅次于医疗机构本身。同时,数字化转型对于医药企业的赋能作用也是十分明显的,尤其在营销端,一系列的数字化管理、数字化推广方案已经成为…

Windows下安装达梦8开发版数据库

达梦数据库属于国产主流数据库之一,本文记录WIndows下安装最新的达梦8数据库的过程。   达梦官网(参考文献1)下载开发版(X86平台)版安装包,如下图所示: 解压安装包后,其中包含ISO文…

Neo4j基本用法

Neo4j基本用法 找到电影的示例点开 跳到2,然后点击提供的示例代码,会自动复制粘贴到上方的控制台,然后点击执行按钮 当我们点击了执行以后,会得到如下的基本图模型 将指示器跳到3,然后点击第一个查询语句 同样地&…

虚拟机网络配置及Moba工具的使用

A、设置IP和网关 1、设置IP [roothadoop00 ~]# vi /etc/sysconfig/network-scripts/ifcfg-eth0 (修改如下标红内容,没有的就添加) DEVICEeth0 HWADDR08:00:27:BD:9D:B5 #不用改 TYPEEthernet UUID53e4e4b6-9724-43ab-9da7-68792e611031…

人类行为动作数据集大合集

最近收集了一大波关于人类行为动作的数据集,主要包括:动作识别、行为识别、活动预测、动作行为分类等数据集。废话不多说,接下来就给大家介绍这些数据集!! 1、用于自动视频编辑的视频Blooper数据集 用于自动视频编辑…

助力工业焊缝质量检测,YOLOv7【tiny/l/x】不同系列参数模型开发构建工业焊接场景下工件表面焊接缺陷检测识别分析系统

焊接是一个不陌生但是对于开发来说相对小众的场景,在工件表面焊接场景下常常有对工件表面缺陷智能自动化检测识别的需求,工业AI结合落地是一个比较有潜力的场景,在我们前面的博文开发实践中也有一些相关的实践,感兴趣的话可以自行…

python-分享篇-时钟

文章目录 代码效果 代码 Function:Python制作简易时钟 Author:Charles 微信公众号:TONOWimport turtle import datetime悬空移动 def move(distance):turtle.penup()turtle.forward(distance)turtle.pendown()创建表针turtle def createHand(name, length):turtle.reset()move(…

【开源】基于JAVA的班级考勤管理系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 系统基础支持模块2.2 班级学生教师支持模块2.3 考勤签到管理2.4 学生请假管理 三、系统设计3.1 功能设计3.1.1 系统基础支持模块3.1.2 班级学生教师档案模块3.1.3 考勤签到管理模块3.1.4 学生请假管理模块 3.2 数据库设…

C++PythonC# 三语言OpenCV从零开发(3):图像读取和显示

文章目录 相关链接前言Mat是什么读取图片CC#Python 灰度处理CCSharpPython 打印图像信息CCsharpPython 总结 相关链接 C&Python&Csharp in OpenCV 专栏 【2022B站最好的OpenCV课程推荐】OpenCV从入门到实战 全套课程(附带课程课件资料课件笔记) …

C#winform上位机开发学习笔记11-串口助手接收数据用波形显示功能添加

1.功能描述 接收串口数据&#xff0c;并将收到的十六进制数据用坐标系的方式将数据波形展示出来 2.代码部分 步骤1&#xff1a;定义链表&#xff0c;用于数据保存 //数据结构-线性链表private List<byte> DataList new List<byte>(); 步骤2&#xff1a;定义波…

消息中间件之Kafka(一)

1.简介 高性能的消息中间件&#xff0c;在大数据的业务场景下性能比较好&#xff0c;kafka本身不维护消息位点&#xff0c;而是交由Consumer来维护&#xff0c;消息可以重复消费&#xff0c;并且内部使用了零拷贝技术&#xff0c;性能比较好 Broker持久化消息时采用了MMAP的技…

springboot集成tess4j

spring整合tess4j用于OCR识别图片&#xff0c;在windows环境识别正常&#xff0c;在liunx没有反应&#xff0c;本文用于解决部署linux问题。 整合springboot 1、引入pom文件 <dependency><groupId>net.sourceforge.tess4j</groupId><artifactId>tess…

Sentinel 新版本发布,提升配置灵活性以及可观测配套

作者&#xff1a;屿山 基本介绍 Sentinel 是阿里巴巴集团开源的&#xff0c;面向分布式、多语言异构化服务架构的流量治理组件&#xff0c;承接了阿里巴巴近 15 年的双十一大促流量的核心场景&#xff0c;例如秒杀、冷启动、消息削峰填谷、集群流量控制、实时熔断下游不可用服…

​ElasticSearch

目录 简介 基本概念 倒排索引 FST 简介 ES是一个基于lucene构建的&#xff0c;分布式的&#xff0c;RESTful的开源全文搜索引擎。支持对各种类型的数据的索引&#xff1b;搜索速度快&#xff0c;可以提供实时的搜索服务&#xff1b;便于水平扩展&#xff0c;每秒可以处理 …

【PyTorch】使用PyTorch创建卷积神经网络并在CIFAR-10数据集上进行分类

前言 在深度学习的世界中&#xff0c;图像分类任务是一个经典的问题&#xff0c;它涉及到识别给定图像中的对象类别。CIFAR-10数据集是一个常用的基准数据集&#xff0c;包含了10个类别的60000张32x32彩色图像。在本博客中&#xff0c;我们将探讨如何使用PyTorch框架创建一个简…

app如何实现悬浮框滚动到那个模块定位到那。

如图&#xff1a; 使用uniapp内置方法 onPageScroll 获取到滚动了多少。 其实拿到屏幕滚动多少就很简单了&#xff0c;下面是思路。 tap栏切换效果代码就不贴了。直接贴如何到那个模块定位到哪&#xff0c;和点击定位到当前模块。 <view v-if"show" class&qu…

08-微服务Seata分布式事务使用

一、分布式事务简介 1.1 概念 事务ACID&#xff1a; A&#xff08;Atomic&#xff09;&#xff1a;原子性&#xff0c;构成事务的所有操作&#xff0c;要么都执行完成&#xff0c;要么全部不执行&#xff0c;不可能出现部分成功部分失 败的情况。 C&#xff08;Consistency&…

网络协议与攻击模拟_06攻击模拟SYN Flood

一、SYN Flood原理 在TCP三次握手过程中&#xff0c; 客户端发送一个SYN包给服务器服务端接收到SYN包后&#xff0c;会回复SYNACK包给客户端&#xff0c;然后等待客户端回复ACK包。但此时客户端并不会回复ACK包&#xff0c;所以服务端就只能一直等待直到超时。服务端超时后会…