构建一个ST-GCN(Spatio-Temporal Graph Convolutional Network)模型需要结合图卷积网络(GCN)的思想,以处理时空数据。以下是一个简单的例子,演示如何使用PyTorch构建ST-GCN模型:
import torch
import torch.nn as nn
import torch.nn.functional as F
class STGraphConvolution(nn.Module):
def __init__(self, in_channels, out_channels, graph_matrix):
super(STGraphConvolution, self).__init__()
self.graph_matrix = graph_matrix
self.weight = nn.Parameter(torch.rand(in_channels, out_channels))
self.bias = nn.Parameter(torch.zeros(out_channels))
def forward(self, x):
batch_size, num_nodes, num_frames, num_features = x.size()
x = x.view(batch_size, num_nodes * num_frames, num_features) # Reshape for graph convolution
adjacency_matrix = self.graph_matrix.view(num_nodes, num_nodes).to(x.device)
adjacency_matrix = F.normalize(adjacency_matrix, p=1, dim=1) # Normalize adjacency matrix
x = torch.matmul(x, self.weight)
x = torch.matmul(adjacency_matrix, x)
x = x.view(batch_size, num_nodes, num_frames, -1) + self.bias.view(1, -1, 1, 1)
return x
class STGCN(nn.Module):
def __init__(self, in_channels, spatial_channels, temporal_channels, graph_matrix):
super(STGCN, self).__init__()
self.graph_conv1 = STGraphConvolution(in_channels, spatial_channels, graph_matrix)
self.graph_conv2 = STGraphConvolution(spatial_channels, temporal_channels, graph_matrix)
def forward(self, x):
x = self.graph_conv1(x)
x = F.relu(x)
x = self.graph_conv2(x)
x = F.relu(x)
return x
# 示例用法
num_nodes = 10 # 假设有10个节点
in_channels = 3 # 输入通道数,根据你的数据而定
spatial_channels = 64 # 空间通道数,根据你的数据而定
temporal_channels = 32 # 时间通道数,根据你的数据而定
# 生成一个随机的邻接矩阵作为示例
graph_matrix = torch.randn((num_nodes, num_nodes))
model = STGCN(in_channels, spatial_channels, temporal_channels, graph_matrix)
# 随机生成输入数据
input_data = torch.randn((2, num_nodes, 5, in_channels))
# 输出结果
output = model(input_data)
print("Input shape:", input_data.shape)
print("Output shape:", output.shape)
ST-GCN 人体姿态估计模型 代码实战