基于数据驱动 U-Net 模型的大气污染物扩散快速预测,提升计算速度近6000倍

项目背景

当前,常见的大气污染预测模型大多是基于物理机理构建的,比如空气质量预测模型 Calpuff、AERMOD、CMAQ 等。然而,这些模型运算较为复杂,对于输入数据的要求非常高,运算耗时也比较长,适合用于常规固定区域的预报。当遇到突发污染事件时,就无法有效发挥作用。

针对以上问题,本项目以某城区 3km*3km 范围的固定模拟区域,根据污染物扩散模型,快速计算任意释放点源和任意风向的污染物扩散动图,并进行精度评估。仅利用城市局部污染物扩散云图作为输入,使用深度学习模型提取图像中污染物扩散的特征,纯数据驱动,无需建立物理模型,预测耗时短,适合作为突发污染扩散事件时的应急处置决策辅助。

项目需求

课题名称

基于数据驱动的污染物扩散深度学习模型案例

课题需求

外部单位提供数据集,总数据集详细描述:120 个动图数据(3 个风速*5 个释放源点位 * 8 个风向)。选取其中任意 1 个动图的数据,基于数据驱动类模型(模型不限制)提取数据特征,得到污染物扩散模型,可对污染物扩散进行预测。

  • 项目地址

https://aistudio.baidu.com/aistudio/projectdetail/5663515

实现过程

数据集

我们选择了风速 15m/s,风向正北,Pos_0 作为污染源释放点的动图数据,数据来源于某城区 3km*3km 范围的固定区域内污染物扩散 CFD 模拟结果(南京欧帕提亚公司提供),共 745 秒 148 张污染物浓度云图,两张图片时间间隔 5 秒。

基于飞桨 2.4.0 的开发环境,在对动图解压之后,我们发现动图解压得到的 181 张静态图片中第 148 张之后的图片存在明显的图像抖动。我们采用了基于 Harris 角点检测的图像对齐算法进行处理,但是图像抖动没有得到完全消除。为了保证模型输入数据的质量,我们丢弃了第 148 张之后的静态图片。

图 1 原始数据
在这里插入图片描述

图1 原始数据

U-Net 网络模型

网络模型如图 2 所示,其由 3 个 Encoder/Decoder、9 个卷积 Conv、9 个反卷积 Conv-T 组成,约 30 万个训练参数。之所以选择 U-Net,是因为该网络在图像分割和目标识别中应用广泛,污染物扩散模式学习可以看作是一种动态的目标识别任务,只不过目标的形态比较抽象;另一个原因是 U-Net 的代码实现较简单,短时间内可以完成网络的搭建。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-LEHNfl7B-1687247631447)(https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/99680ddcbcd54560afb36c56f8c13efe~tplv-k3u1fbpfcp-zoom-1.image “wps_doc_3.png”)]

图2 U-Net网络图

核心代码

import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn.utils import weight_norm

# 创建基础卷积层
def create_layer(in_channels, out_channels, kernel_size, wn=True, bn=True,
                 activation=nn.ReLU, convolution=nn.Conv2D):
    assert kernel_size % 2 == 1
    layer = [ ]
    conv = convolution(in_channels, out_channels, kernel_size, padding=kernel_size // 2)
    if wn:
        conv = weight_norm(conv)
    layer.append(conv)
    if activation is not None:
        layer.append(activation())
    if bn:
        layer.append(nn.BatchNorm2D(out_channels))
    return nn.Sequential(*layer)

# 创建Encoder中的单个块
def create_encoder_block(in_channels, out_channels, kernel_size, wn=True, bn=True,
                         activation=nn.ReLU, layers=2):
    encoder = [ ]
    for i in range(layers):
        _in = out_channels
        _out = out_channels
        if i == 0:
            _in = in_channels
        encoder.append(create_layer(_in, _out, kernel_size, wn, bn, activation, nn.Conv2D))
    return nn.Sequential(*encoder)

# 创建Decoder中的单个块
def create_decoder_block(in_channels, out_channels, kernel_size, wn=True, bn=True,
                         activation=nn.ReLU, layers=2, final_layer=False):
    decoder = [ ]
    for i in range(layers):
        _in = in_channels
        _out = in_channels
        _bn = bn
        _activation = activation
        if i == 0:
            _in = in_channels * 2
        if i == layers - 1:
            _out = out_channels
            if final_layer:
                _bn = False
                _activation = None
        decoder.append(create_layer(_in, _out, kernel_size, wn, _bn, _activation, nn.Conv2DTranspose))
    return nn.Sequential(*decoder)

# 创建Encoder
def create_encoder(in_channels, filters, kernel_size, wn=True, bn=True, activation=nn.ReLU, layers=2):
    encoder = [ ]
    for i in range(len(filters)):
        if i == 0:
            encoder_layer = create_encoder_block(in_channels, filters[i], kernel_size, wn, bn, activation, layers)
        else:
            encoder_layer = create_encoder_block(filters[i - 1], filters[i], kernel_size, wn, bn, activation, layers)
        encoder = encoder + [encoder_layer]
    return nn.Sequential(*encoder)

# 创建Decoder
def create_decoder(out_channels, filters, kernel_size, wn=True, bn=True, activation=nn.ReLU, layers=2):
    decoder = []
    for i in range(len(filters)):
        if i == 0:
            decoder_layer = create_decoder_block(filters[i], out_channels, kernel_size, wn, bn, activation, layers,
                                                 final_layer=True)
        else:
            decoder_layer = create_decoder_block(filters[i], filters[i - 1], kernel_size, wn, bn, activation, layers,
                                                 final_layer=False)
        decoder = [decoder_layer] + decoder
    return nn.Sequential(*decoder)

# 创建网络
class UNetEx(nn.Layer):
    def __init__(self, in_channels, out_channels, kernel_size=3, filters=[16, 32, 64], layers=3,
                 weight_norm=True, batch_norm=True, activation=nn.ReLU, final_activation=None):
        super().__init__()
        assert len(filters) > 0
        self.final_activation = final_activation
        self.encoder = create_encoder(in_channels, filters, kernel_size, weight_norm, batch_norm, activation, layers)
        decoders = [ ]
        # for i in range(out_channels):
        decoders.append(create_decoder(out_channels, filters, kernel_size, weight_norm, batch_norm, activation, layers))
        self.decoders = nn.Sequential(*decoders)

    def encode(self, x):
        tensors = [ ]
        indices = [ ]
        sizes = [ ]
        for encoder in self.encoder:
            x = encoder(x)
            sizes.append(x.shape)
            tensors.append(x)
            x, ind = F.max_pool2d(x, 2, 2, return_mask=True)
            indices.append(ind)
        return x, tensors, indices, sizes

    def decode(self, _x, _tensors, _indices, _sizes):
        y = [ ]
        for _decoder in self.decoders:
            x = _x
            tensors = _tensors[:]
            indices = _indices[:]
            sizes = _sizes[:]
            for decoder in _decoder:
                tensor = tensors.pop()
                size = sizes.pop()
                ind = indices.pop()
                # 反池化操作,为上采样
                x = F.max_unpool2d(x, ind, 2, 2, output_size=size)
                x = paddle.concat([tensor, x], axis=1)
                x = decoder(x)
            y.append(x)
        return paddle.concat(y, axis=1)

    def forward(self, x):
        x, tensors, indices, sizes = self.encode(x)
        x = self.decode(x, tensors, indices, sizes)
        if self.final_activation is not None:
            x = self.final_activation(x)
        return x

训练

训练时输入数据为上一时刻的污染物云图,输出为预测的下一时刻的污染物云图。当前的训练 batch-size 为 1,即只预测下一时刻的污染物扩散情况。训练时,每 10 个 epoch 保存一次模型,防止训练意外中断时模型参数丢失。

# 训练方法
def train(model, train_dataset, criterion, optimizer, device, num_epochs):
    loss_history = [ ]
    epoch_loss = 0
# 遍历批次
    for epoch in range(num_epochs):
        optimizer.clear_grad()
        for batch_id in range(len(train_dataset)-1):
            inputs = train_dataset[batch_id]
            outputs_true = train_dataset[batch_id+1]

            inputs = T.ToTensor()(inputs)
            inputs = paddle.unsqueeze(inputs, 0)
            outputs_true = T.ToTensor()(outputs_true)
            outputs_true = paddle.unsqueeze(outputs_true, 0)

# 训练
            outputs = model(inputs)
# 计算损失值
            loss = criterion(outputs, outputs_true)
            if batch_id % 10 ==0:
                print('epoch:',epoch,'batch_id:',batch_id,'loss:',loss.numpy())
            loss.backward()

            epoch_loss += loss.item()
        optimizer.step()
        epoch_loss /= len(train_dataset)


        loss_history.append(epoch_loss)
        print("Epoch [{}/{}], Loss: {:.8f}".format(epoch + 1, num_epochs, loss.numpy()[0]))

    # 保存模型
        if epoch % 10 == 0:
            save_model(model, '/home/aistudio/pollution_model.pdparams')

    print("Training complete.")
return loss_history

预测

预测时,输入测试数据某时刻的污染物扩散云图,预测下一时刻的污染物扩散情况。测试函数中 supervise 这个 flag 为后续连续预测多个时刻的数据预置了接口。目前 supervise 置为 true,当模型预备连续预测多个时刻数据时,测试时将 supervise 置为 false。

def test():
    # 初始化结果列表
    results = [ ]

    # 测试集合起始点
    inputs = test_dataset[0]
    inputs = T.ToTensor()(inputs)
    inputs = paddle.unsqueeze(inputs, 0)

    # 是否supervise
    flag_supervise = True

    device = paddle.set_device('gpu' if paddle.is_compiled_with_cuda() else 'cpu')
    # 加载模型
    model = UNetEx(3,3,3)
    load_model(model,'/home/aistudio/pollution_model.pdparams',device)

    for num in range(1,10):

        # 进行预测
        outputs = model(inputs)

        outputs_np = outputs.numpy()
        outputs_np = np.squeeze(outputs_np, axis=0)  # 去除第一个维度(batch_size)
        outputs_np = np.transpose(outputs_np, (1, 2, 0))  # 将通道维度调整为最后一个维度
        outputs_np = (255 * np.clip(outputs_np, 0, 1)).astype('uint8')
        #outputs_np = outputs_np.transpose([1, 2, 0])
        #outputs_np_uint8 = (outputs_np * 255).astype(np.uint8)
        # 将预测结果添加到结果列表中
        results.append(outputs_np)

        if flag_supervise == False:
            # 将预测结果作为下一帧的输入
            inputs = outputs
        else:
            # 使用真实数据预测
            inputs = test_dataset[num+1]
            inputs = T.ToTensor()(inputs)
            inputs = paddle.unsqueeze(inputs, 0)

    return results

results = test()

项目成果

在这里插入图片描述
图3 计算函数损失值
在这里插入图片描述
图4 对比 CFD 模拟参数对比

在这里插入图片描述

图5 残差值对比

如图 5 所示,浓度误差主要集中在污染源附近(如图红色框),主要数值分布在-0.02~0.02 之间。不同颜色分别代表不同浓度区间误差,蓝色表示的低浓度相对误差较小,绿色红色表示的中高浓度误差平均误差较高,绿色区域表征的中等浓度区域,偏大的误差影响的面积较大。

在这里插入图片描述

图6 数值对比

未来发展方向

预测能力方面

  • 基于前一时刻的污染物浓度云图,预测后十个时刻、二十个时刻,四十个时刻的污染物浓度云图;

  • 尝试用多时刻预测多时刻。

网络方面

  • 尝试引入更先进的网络架构,如 transformer;

  • 对于网络层数和每层网络的神经元个数,尝试进行敏感性分析和误差分析;

  • 尝试引入更多种类的激活函数如 tanh,silu 等;

  • 尝试对 learning rate、batch size 等超参数进行调整实验。

物理原理方面

  • 尝试引入物理先验知识,对建筑、边界位置施加 loss 软约束;

  • 尝试利用流体 NS 方程对模型进行修正。

模型方面

  • 尝试引入更多参数作为输入:如污染源位置、污染源初始浓度等提高模型的适应能力;

  • 增加模型参数量级,探索大模型对复杂多态问题的处理能力;

  • 尝试和传统流体求解方法进行融合。

项目意义与心得

本项目尝试用 U-Net 网络通过污染物扩散云图来学习污染物扩散的模型参数,对污染物扩散进行快速预测,是数据驱动计算场景拓展的一次探索。从项目结果来看,模型计算速度相比 CFD 模拟提升明显,但是模型预测的效果还有待提升,未来将通过探索以上几个方向,不断优化模型预测效果。项目实现过程中,我们花费了大量的时间处理背景存在抖动的图像,直到后来发现有一部分数据集的质量要远远好于另一部分,我们选择放弃质量不好的数据,从而加快了项目的进展。

数据处理过程中有以下几个方面的心得。

第一,对项目的数据应该第一时间进行全局探索,了解数据的全貌,对数据质量进行评估;

第二,与其花费大量的时间处理质量不好的数据,不如先使用质量较好的数据,优先做对模型取得进展更加关键的事情;

第三,相对于改变模型的结构,提高输入数据的质量对模型的训练结果起到更加积极的作用。一些开源模型的效果无法复现的原因在于训练数据的不公开,即便大家都用到同样结构的网络,但是训练数据不同,模型取得的效果就大不相同。从这个角度看,模型参数是训练数据在网络上留下的压缩信息,训练数据存在的瑕疵很难通过优化网络来解决。

飞桨 AI for Science 共创计划为本项目提供了强大的技术支持,打造活跃的前瞻性的 AI for Science 开源社区,通过飞桨 AI for Science 共创计划,学习到了如何在飞桨平台上使用科学计算的 AI 方法去解决 CFD 模拟预测的问题,并且大幅度提高了数据驱动计算的速度。相信未来会有越来越多的项目通过 AI for Science 共创计划建立产学研闭环,推动科研创新与产业赋能。

相关地址

  • 飞桨 AI for Science 共创计划

https://www.paddlepaddle.org.cn/science

  • 飞桨 PPSIG-Science 小组

https://www.paddlepaddle.org.cn/specialgroupdetail?id=9

  • 飞桨 PaddleScience 工具组件

https://github.com/PaddlePaddle/PaddleScience

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/32352.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

如何在 ZBrush 和 UE5 中创建精灵吟游诗人(P1)

小伙伴们大家好,今天 云渲染小编给大家带来的是CG艺术家Hugo Sena关于“精灵吟游诗人”项目背后的工作流程,讨论了角色身体、服装和竖琴的工作流程,并解释了如何在虚幻引擎 5 中设置灯光。篇幅较长,分为上下两篇,大家接…

为摸鱼助力:一份Vue3的生成式ElementPlus表单组件

目录 一、实现背景 二、简介 三、组织架构设计 四、实现方式 五、代码示例 六、示例代码效果预览 七、项目预览地址 & 项目源码地址 目前项目还有诸多待完善的地方,大家有好的想法、建议、意见等欢迎再次评论,或于github提交Issues 一、实现…

【吃透网络安全】2023软考网络管理员考点网络安全(三)计算机系统安全评估

涉及知识点 计算机系统安全评估准则,计算机系统安全评估历史,软考网络管理员常考知识点,软考网络管理员网络安全,网络管理员考点汇总。 后面还有更多续篇希望大家能给个赞哈,这边提供个快捷入口! 第一节…

解决vue依赖报错SockJSServer.js出现Cannot read property ‘headers‘ of null

前言 在做新的需求需要变更vue的项目代码时突然出现报错 TypeError: Cannot read property ‘headers’ of null at Server.socket.on (***/node_modules/webpack-dev-server/lib/servers/SockJSServer.js:68:32) 不清楚为什么突然出现了这个问题,之前在这个vue项目…

【安全】使用docker安装Nessus

目录 一、准备docker环境服务器(略) 二、安装 2.1 搜索镜像 2.2 拉取镜像 2.3 启动镜像 三、离线更新插件 3.1 获取challenge 3.2 官方注册获取激活码 3.3 使用challenge码和激活码获取插件下载地址 3.4 下载的插件以及许可协议复制到容器内 四…

数据结构第六章 图 6.4 图的应用 错题整理

4.A A. 不是简单路径的话,有环,去环路径会更短 B. 适合的 弗洛伊德算法才不适合 C. 本来就是 D 2X2矩阵拓展到3X3矩阵 再扩大 若是子集 即加入新顶点后,最短路径都没有变,错 5.B 本题用弗洛伊德更合适 但这道题只需全部代入求最…

PowerShell系列(七)PowerShell当中的Provider介绍

往期回顾PowerShell系列(一):PowerShell介绍和cmd命令行的区别 PowerShell系列(二):PowerShell和Python之间的差异介绍 PowerShell系列(三):PowerShell发展历程梳理 P…

@DateTimeFormat与@JsonFormat不完全解析

目录 前言测试代码DateTimeFormat不加任何注解的情况普通请求JSON请求 JsonFormat普通请求JSON请求 其他方式(InitBinder)结论源码地址 前言 一直以来对DateTimeFormat与JsonFormat 比较模糊,容易搞忘,今天就做个笔记&#xff0c…

UE4自定义资产类型编辑器实现

在虚幻引擎中,资产是具有持久属性的对象,可以在编辑器中进行操作。 Unreal 附带多种资源类型,从 UStaticMesh 到 UMetasoundSources 等等。 自定义资源类型是实现专门对象的好方法,这些对象需要专门构建的编辑器来进行高效操作。 …

SQL语言的四大组成部分——DCL(数据控制语言)

1️⃣前言 SQL语言中的DCL(Data Control Language)是一组用于控制数据库用户访问权限的语言,主要包括GRANT、REVOKE、DENY等关键字。 文章目录 1️⃣前言2️⃣DCL语言3️⃣GRANT关键字4️⃣REVOKE关键字5️⃣DENY关键字6️⃣总结附&#xff1…

【kubernetes】部署网络组件Calico与CoreDNS

前言:二进制部署kubernetes集群在企业应用中扮演着非常重要的角色。无论是集群升级,还是证书设置有效期都非常方便,也是从事云原生相关工作从入门到精通不得不迈过的坎。通过本系列文章,你将从虚拟机配置开始,到使用二进制方式从零到一搭建起安全稳定的高可用kubernetes集…

基于YOLO V8的车牌识别

赵春江 2023年6月 1、前言 十年前就想实现车牌识别这项任务,虽然当时这项技术就已较成熟(与现在的实现方法不同),但那时的我还具备这个能力。弹指一瞬间,没想到十年间人工智能技术已经发展到一个新的高度&#xff0c…

Nacos架构与原理 - 健康检查机制

文章目录 注册中心的健康检查机制Nacos 健康检查机制临时实例健康检查机制永久实例健康检查机制集群模式下的健康检查机制 注册中心的健康检查机制 想象发生地质灾害,被掩埋在废墟下,搜救队需定位才能施救。两种方法: 大喊求救,告知位置与健康状况,让搜救队知晓搜救队使用专业…

社区活动 | OpenVINO™ DevCon 中国系列工作坊第二期 | 使用 OpenVINO™ 加速生成式 AI...

生成式 AI 领域一直在快速发展,许多潜在应用随之而来,这些应用可以从根本上改变人机交互与协作的未来。这一最新进展的一个例子是 GPT 模型的发布,它具有解决复杂问题的能力,比如通过医学和法律考试这种类似于人类的能力。然而&am…

CnOpenData数字经济专利申请与授权数据

一、数据简介 自人类社会进入信息时代以来,数字技术的快速发展和广泛应用衍生出数字经济。与农耕时代的农业经济、工业时代的工业经济大有不同,数字经济是一种新的经济、新的动能、新的业态,并引发了社会和经济的整体性深刻变革。现阶段&…

openEuler操作系统禁用 Nouveau

目录 一、什么是openEuler 二、什么是Nouveau 三、禁用Nouveau Liunx系统安装NVIDIA显卡驱动时需要禁用Nouveau,openEuler操作系统也不例外,但是网上openEuler操作系统如何禁用Nouveau的资料比较少,而且基本都不靠谱,我找到一个…

Keras-深度学习-神经网络-人脸识别模型

目录 模型搭建 模型训练 模型搭建 ①导入所需的库,导入了 Keras 和其他必要的库,用于构建和处理图像数据。 from keras.models import Sequential from keras.layers import Dense, Flatten, Conv2D, MaxPooling2D import os from PIL import Image …

streamlit——搭建学生评分网站(告别问卷星)

streamlit搭建多人评分网站 文章目录 streamlit搭建多人评分网站一、引言二、数据准备三、streamlit代码四、数据合并代码 一、引言 当需要对班级内多人进行打分时,为了不使用问卷星等平台进行评分,使用pandas进行操作数据,使用streamlit进行…

chatgpt赋能python:Python要点:从入门到精通

Python要点:从入门到精通 Python是一门高级编程语言,是一种解释型、面向对象、动态数据类型的语言。它的设计思想是“代码易读易写”,在数据科学、人工智能、自动化测试、Web开发等领域广泛应用。本文将从入门到精通的角度来介绍Python的要点…

内网穿透技术

文章目录 前言1. 安装JAVA2. MCSManager安装3.局域网访问MCSM4.创建我的世界服务器5.局域网联机测试6.安装cpolar内网穿透7. 配置公网访问地址8.远程联机测试9. 配置固定远程联机端口地址9.1 保留一个固定tcp地址9.2 配置固定公网TCP地址9.3 使用固定公网地址远程联机 转载自内…