Keras-深度学习-神经网络-人脸识别模型

目录

模型搭建

模型训练


模型搭建

①导入所需的库,导入了 Keras 和其他必要的库,用于构建和处理图像数据。

from keras.models import Sequential
from keras.layers import Dense, Flatten, Conv2D, MaxPooling2D
import os
from PIL import Image
import numpy

②加载人脸数据并进行处理,并将其划分为训练集和测试集。每个人的图像按顺序排列,训练集包含每个人前6张图像,测试集包含剩余的图像。每个图像都被转换为像素值列表,并与相应的标签一起存储。

picture_path = r"C:\Users\Yezi\Desktop\机器学习\数据集\Yale_face10080"
suffix = ".bmp"
num_people = 15
num_train = 6
num_picture_single = 11
dimension = [80, 100]
x_train = []
y_train = []
x_test = []
y_test = []
picture_file = [file for file in os.listdir(picture_path) if file.endswith(suffix)]
num_picture = len(picture_file)
for i in range(num_picture):
    picture = list(Image.open(picture_path + '\\' + picture_file[i]).getdata())
    y = [0] * num_people
    y[i // num_picture_single] = 1
    if i % num_picture_single < num_train:
        x_train.append(picture)
        y_train.append(y)
    else:
        x_test.append(picture)
        y_test.append(y)
x_train, x_test, y_train, y_test = numpy.array(x_train), numpy.array(x_test), numpy.array(y_train), numpy.array(y_test)

③将数据变为四维张量并归一化,图像数据需要转换为四维张量,维度是(样本数,图像高度,图像宽度,通道数)。此处将图像数据的通道数设置为1,表示灰度图像。然后对图像数据进行归一化处理,将像素值缩放到0到1之间。

x_train = x_train.reshape(x_train.shape[0], dimension[0], dimension[1], 1).astype('float32') / 255
x_test = x_test.reshape(x_test.shape[0], dimension[0], dimension[1], 1).astype('float32') / 255

④建了模型,采用了序贯模型(Sequential)。模型由一个卷积层、一个最大池化层、一个扁平层(用于将多维数据展平为一维)、一个全连接层(用于输出分类概率)组成。激活函数使用了 ReLU,并且最后的全连接层使用了 softmax 激活函数以获得分类概率。

model = Sequential()
model.add(Conv2D(filters=4, kernel_size=(3, 3), activation='relu', input_shape=(dimension[0], dimension[1], 1)))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(num_people, activation='softmax'))

⑤使用交叉熵作为损失函数,Adam 作为优化器进行训练,并且监测模型的准确率。

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

⑥使用训练集对模型进行训练,指定了批次大小和训练轮数,并在训练过程中显示进度和验证集的表现。

history = model.fit(x_train, y_train, batch_size=128, epochs=20, verbose=1, validation_data=(x_test, y_test))

⑦对训练好的模型使用测试集进行验证,并打印出测试准确率。

score = model.evaluate(x_test, y_test, verbose=0)
print('Test accuracy:', score[1])

模型训练

以下是python构建的卷积神经网络在ORL、FERET和YaleFace三个人脸数据集的训练和表现情况。

  • ORL人脸数据集

ORL人脸数据集有40个人的人脸数据,每个人10张照片,一共400张照片,照片的维数是46×56。我们将每个人的前5张照片作为训练集,共200张,剩下的5张作为测试集,最后的全连接层采用40个神经元作为模型的输出,使用了64个卷积核,训练了20轮,训练过程如图1所示。

图1 ORL训练过程

训练出的人脸识别模型在测试集上的识别率随训练的轮次的变化如图2所示。

图2 ORL识别率

具体数据如表1所示。

表1 ORL

由结果可以看出,ORL数据集训练出来的模型,其拟合效果和泛化效果都比较好。

  • FERET人脸数据集

FERET人脸数据集有200个人的人脸数据,每个人7张照片,一共1400张照片,照片的维数是80×80。我们将每个人的前4张照片作为训练集,共800张,剩下的3张作为测试集,最后的全连接层采用200个神经元作为模型的输出,使用了4个卷积核,训练了20轮,训练过程如图3所示。

图3 FERET训练过程

训练出的人脸识别模型在测试集上的识别率随训练的轮次的变化如图4所示。

图4 FERET识别率

具体数据如表2所示。

表2 FERET

由结果可以知道,FERET数据集训练出来的模型,其拟合效果很好,但泛化效果并不理想,分析原因可能是因为训练的数据过少,加上FERET的噪声影响比较大,最后一张照片光线很暗,导致了测试集的识别率不高。

  • Yale Face人脸数据集

Yale Face人脸数据集有15个人的人脸数据,每个人11张照片,一共165张照片,照片的维数是80×100。我们将每个人的前6张照片作为训练集,共90张,剩下的5张作为测试集,最后的全连接层采用15个神经元作为模型的输出,使用了16个卷积核,训练了20轮,训练过程如图5所示。

图5 Yale Face训练过程

训练出的人脸识别模型在测试集上的识别率随训练的轮次的变化如图6所示。

图6 Yale Face识别率

具体数据如表3所示。

表3 Yale Face

由结果可以看出,Yale Face数据集训练出来的模型,其拟合效果和泛化效果都比较好。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/32328.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

streamlit——搭建学生评分网站(告别问卷星)

streamlit搭建多人评分网站 文章目录 streamlit搭建多人评分网站一、引言二、数据准备三、streamlit代码四、数据合并代码 一、引言 当需要对班级内多人进行打分时&#xff0c;为了不使用问卷星等平台进行评分&#xff0c;使用pandas进行操作数据&#xff0c;使用streamlit进行…

chatgpt赋能python:Python要点:从入门到精通

Python要点&#xff1a;从入门到精通 Python是一门高级编程语言&#xff0c;是一种解释型、面向对象、动态数据类型的语言。它的设计思想是“代码易读易写”&#xff0c;在数据科学、人工智能、自动化测试、Web开发等领域广泛应用。本文将从入门到精通的角度来介绍Python的要点…

内网穿透技术

文章目录 前言1. 安装JAVA2. MCSManager安装3.局域网访问MCSM4.创建我的世界服务器5.局域网联机测试6.安装cpolar内网穿透7. 配置公网访问地址8.远程联机测试9. 配置固定远程联机端口地址9.1 保留一个固定tcp地址9.2 配置固定公网TCP地址9.3 使用固定公网地址远程联机 转载自内…

自学黑客(网络安全),一般人我劝你还是算了吧(自学网络安全学习路线--第九章 Internet安全协议)【建议收藏】

文章目录 一、自学网络安全学习的误区和陷阱二、学习网络安全的一些前期准备三、自学网络安全学习路线一、安全协议概述二、IPSec协议1、概述2、IP封装过程3、IPSec不安全性4、IPSec的功能5、IPSec体系结构6、IPSec的AH7、IPSec的AH8、IPSec的ESP9、IPSec的ESP10、ISAKMP11、IK…

中职网络搭建(服务器)—Linux LVM(标准答案)

题目要求如下 使用fdisk-l查看磁盘信息 我们添加的磁盘分别是sdb和sdc Fdisk /dev/sdb 依次输入n,p,1&#xff0c;回车,2G &#xff08;新建2G的主分区&#xff09; 依次输入n,e,2&#xff0c;回车&#xff0c;回车&#xff08;使用剩余的全部空间建立扩展分区&#xff09; 依…

高德地图的使用

JS API 结合 Vue 使用 高德地图 jsapi 下载、引入 npm add amap/amap-jsapi-loaderimport AMapLoader from amap/amap-jsapi-loader 使用2.0版本的loader需要在window对象下先配置 securityJsCode JS API 安全密钥使用 JS API 使用 script 标签同步加载增加代理服务器设置…

数据挖掘(6.1)--神经网络

目录 神经网络简介 BP算法 Delta学习规则的基本原理 BP神经网络的结构 BP神经网络的算法描述 神经网络训练一般步骤 后向传播算法的主要步骤 优缺点 BP算法简单举例 神经网络简介 神经网络是一种计算模型&#xff0c;它受到人脑处理信息的生物神经网络过程的启发。人…

第44步 深度学习图像识别:ResNet50建模(Tensorflow)

基于WIN10的64位系统演示 一、写在前面 &#xff08;1&#xff09;ResNet50 ResNet50是一种深度学习模型&#xff0c;由微软研究院的研究人员在2015年提出。"ResNet"的全称是"Residual Network"&#xff0c;意为"残差网络"&#xff0c;"…

React 基本介绍

目录 1、React是什么 2、React 三大颠覆性的特点 2.1 组件 2.2 JSX 2.3 Virtual DOM 3、Flux 架构&#xff08;redux&#xff09; 3.1 Flux 3.2 redux 4、打包工具&#xff08;webpack&#xff09; 4.1 webpack与RequireJS、browserify 4.2 模块规范 4.3 非 JavaSc…

实验篇(7.2) 17. 站对站安全隧道 - FortiGate作为SSL客户端(SSL) ❀ 远程访问

【简介】虽然常用的站到站的连接用的是IPsec VPN&#xff0c;但是在某些特殊情况下&#xff0c;UDP500或4500端口被阻断&#xff0c;IPsec VPN无法连接&#xff0c;那么还有其它办法实现站到站的连接吗&#xff1f;SSL VPN也可以的。 实验要求与环境 OldMei集团深圳总部部署了域…

【云原生】二进制k8s集群(下)部署高可用master节点

本次部署说明 在上一篇文章中&#xff0c;就已经完成了二进制k8s集群部署的搭建&#xff0c;但是单机master并不适用于企业的实际运用&#xff08;因为单机master中&#xff0c;仅仅只有一台master作为节点服务器的调度指挥&#xff0c;一旦宕机。就意味着整个集群的瘫痪&#…

【软考网络管理员】2023年软考网管初级常见知识考点(23)- 路由器的配置

涉及知识点 华为路由器的配置&#xff0c;华为路由器命令大全&#xff0c;软考大纲路由命令&#xff0c;静态路由和动态路由的配置命令&#xff0c;软考网络管理员常考知识点&#xff0c;软考网络管理员网络安全&#xff0c;网络管理员考点汇总。 原创于&#xff1a;CSDN博主-…

数字化转型的难点是什么?该如何突破?

01为什么要进行数字化转型&#xff1f; 数字化转型不仅是企业提高效率和竞争力的必经之路&#xff0c;也是市场发展趋势的体现。 提升业务效率&#xff1a;数字化转型可以采用自动化流程、数据分析和智能化技术&#xff0c;从而提高企业业务的自动化水平&#xff0c;优化流程…

贝叶斯算法人生

哈喽大家好&#xff0c;我是咸鱼 之前看到过耗子叔写的一篇文章《程序算法与人生选择》&#xff0c;这篇文章中耗子叔结合计算机中的经典算法&#xff08;排序、动态规划等等&#xff09;&#xff0c;让大家在人生道路的选择上获得了一些启发 我最近看了一些关于贝叶斯思想的…

数字图像处理-图像复原与重建

文章目录 一、图像退化/复原过程的模型二、噪声模型2.1噪声的空间和频率特性2.2一些重要的噪声概率密度函数2.2.1高斯噪声2.2.2瑞利噪声2.2.3爱尔兰&#xff08;伽马&#xff09;噪声2.2.4指数噪声2.2.5均匀噪声2.2.6脉冲&#xff08;椒盐&#xff09;噪声 2.3周期噪声 三、只存…

为什么有了HTTP,还需要WebSocket协议?

目录 WebSocket是什么&#xff1f; WebSocket怎样建立连接&#xff1f; WebSocket的实际用途 WebSocket 与 HTTP 的选择 HTTP是基于TCP协议的&#xff0c;同一时间里&#xff0c;客户端和服务器只能有一方主动发数据&#xff0c;是半双工通信。 通常&#xff0c;打开某个网…

Redis从入门到精通【进阶篇】之高可用主从详解

文章目录 0.前言1.详解1.1 主从复制概述1.2 主从复制原理1.2.1.全量复制1.2.2.增量复制1.2.3.详细描述1.3 更深入理解1.4 常见面试题 2. 总结3. Redis从入门到精通系列文章 0.前言 Redis是一个高性能的键值存储系统&#xff0c;广泛应用于Web应用、缓存、消息队列等领域。在实…

论文解读:End-to-End Object Detection with Transformers

发表时间&#xff1a;2020 论文地址&#xff1a;https://arxiv.org/pdf/2005.12872.pdf 项目地址&#xff1a;https://github.com/facebookresearch/detr 提出了一种将对象检测视为集合预测问题的新方法。我们的方法简化了检测流程&#xff0c;有效地消除了许多手工设计的组件…

python自动化办公——读取PPT写入word表格

Python自动化办公——读取PPT内容写入word表格 文章目录 Python自动化办公——读取PPT内容写入word表格一、需求分析二、导入依赖三、代码四、结果及总结 一、需求分析 &#x1f4d6;由于我们知识图谱课程需要将课堂小组汇报的PPT总结成word文档&#xff0c;而我觉得一页一页复…

python爬虫并做可视化分析--前程无忧

一.数据采集 1.采集逻辑 2.数据schema 招聘信息Schema { "岗位名称": "财务会计主管", "薪资":"1.3-2万", "地址": "*******", "经验要求": "5-7年", "公司名": "***…