精确掌控并发:固定时间窗口算法在分布式环境下并发流量控制的设计与实现

这是《百图解码支付系统设计与实现》专栏系列文章中的第(14)篇。点击上方关注,深入了解支付系统的方方面面。

本篇主要介绍分布式场景下常用的并发流量控制方案,包括固定时间窗口、滑动时间窗口、漏桶、令牌桶、分布式消息中间件等,并重点讲清楚固定时间窗口应用原理和应用场景,以及使用reids实现的核心代码。

在非支付场景,也常常需要用到这些并发流量控制方案。

1. 前言

在互联网应用里面,并发流量控制无所不在。在支付系统中,流量控制同样是一个关键的技术方面,主要用于确保系统的稳定性和可靠性,尤其在高流量的情况下。以下是一些主要使用流量控制的场景:

  1. 对外API限流:对外提供的API(如支付接口)需要限流来保护后端服务不会过载。
  2. 保护外部渠道:大促时,对下流渠道的支付流量要做削峰填谷,避免突发流量把渠道打挂。
  3. 保护内部应用:大促时,内部各应用要根据流量模型配置限流值,避免形成雪崩。
  4. 满足外部退款限流要求:电商批量提交退款时,支付系统内部要在分布式集群环境下对某个渠道实现低至1TPS的退款并发,避免超过渠道退款并发导致大批量失败。

特别说明的是,流量控制通常包括限流限速

限流:就是流量达到一定程度,超过的流量会全部立即拒绝掉,也就是快速失败。比如上面的API限流。

限速:一般是指接收流量后,先保存到队列中,然后按指定的速度发出去,如果超过队列最大值,才会拒绝。比如上面的支付流量和退款流量打到外部渠道。

另外,支付和退款流量控制虽然都是流量控制,但有一些细小的区别:

  1. 支付的限流TPS通常比较高,从十几TPS到几百TPS都有,排队时效性要求很高,秒级内就要付出去。
  2. 退款的限流TPS通常比较低,在国外的基础设施建设很差,甚至部分渠道要求退款1TPS。但是排队时效性要求很低,几天内退出去就行。

2. 几种方案对比

固定窗口:算法简单,对突然流量响应不够灵活。超过流量的会直接拒绝,通常用于限流。

滑动窗口: 算法简单,对突然流量响应比固定窗口灵活。超过流量的会直接拒绝,通常用于限流。

漏桶算法:在固定窗口的基础之上,使用队列缓冲流量。提供了稳定的流量输出,适用于对流量平滑性有严格要求的场景。后面会介绍如何应用到外部渠道退款场景。

令牌桶算法:在滑动窗口的基础之上,使用队列缓冲流量。能够允许一定程度的突发性流量,但实现较为复杂。

分布式消息中间件:如Kafka和RabbitMQ等,能够有效地对消息进行缓冲和管理,增加系统复杂性,且如果需要精确控制流量还需要引入额外的机制。后面会介绍如何应用到外部渠道支付场景。

3. 固定时间窗口原理

固定窗口算法,也称为时间窗口算法,是一种流量控制和速率限制策略。此算法将时间轴分割成等长、不重叠的时间段,称为“窗口”。每个窗口都有一个独立的计数器,用于跟踪窗口期间的事件数量(如API调用、数据包传输等)。

固定窗口算法的好处是简单,缺点也很明显,就是无法应对突发流量,比如每秒30并发,如果前100ms来了30个请求,那么在10ms内就会把30个请求打出去,后面的900ms的请求全部拒绝。

工作流程:

  1. 窗口定义:首先确定窗口大小,比如1秒钟。
  2. 计数:每当发生一个事件(比如一个请求到达),就在当前窗口的计数器上加一。
  3. 限制检查:如果当前窗口的计数器达到预设阀值,则拒绝新的请求。直到下一个窗口开始。
  4. 窗口重置:当前窗口结束时,计算数器重置为零,开始下一个窗口计数。

4. 固定时间窗口在支付系统中的应用场景

主要用于简单的限流。比如在渠道网关做限流,发送渠道的请求最大不能超过测算出来的值,避免渠道侧过载,可能会导致支付请求批量失败。

是有损服务的一种实现方式。

5. 使用redis实现的核心代码

为什么选择redis?因为在分布式场景下,限流需要有一个集群共用的计算数来保存当前时间窗口的请求量,redis是一个比较优的方案。

场景示例:WPG渠道的支付每秒不能超过20TPS。

那么设计key=“WPG-PAY” + 当前时间戳(精确到S),数据过期时间为2S(这个过期时间主要是兼容各服务器的时间差)。

下面是流程图:

lua脚本:limit.lua

local key = KEYS[1]
-- 默认为2S超期,精确到S级。也可以改造成由外面传进来 --
local expireTime = 2
-- 先自增,如果不存在就自动创建 --
redis.incr(key);
local count = tonumber(redis.call("get", key))
-- 如果结果为1,说明是新增的,设置超时时间 --
if count == 1 then
    redis.call("expire", key, expireTime)
end
return count;

redis操作类:RedisLimitUtil

/**
 * redis限流操作类
 */
@Component
public class RedisLimitUtil {
    // 限流脚本
    private static final String LIMIT_SCRIPT_LUA = "limit.lua";
    @Autowired
    private RedisTemplate<String, Object> redisTemplate;
    private DefaultRedisScript<Long> limitScript;

    /**
     * 缓存脚本
     */
    @PostConstruct
    public void cacheScript() {
        limitScript = new DefaultRedisScript();
        limitScript.setScriptSource(new ResourceScriptSource(new ClassPathResource(LIMIT_SCRIPT_LUA)));
        limitScript.setResultType(Long.class);

        List<Boolean> cachedScripts = redisTemplate.getConnectionFactory().getConnection().scriptExists(
            limitScript.getSha1());
        // 需要缓存
        if (CollectionUtils.isEmpty(cachedScripts) || !cachedScripts.get(0)) {
            redisTemplate.getConnectionFactory().getConnection().
            scriptLoad(redisTemplate.getStringSerializer().serialize(limitScript.getScriptAsString()));
        }
    }

    /**
     * 判断是否限流
     * 这里不考虑超过long最大值的情况,系统在达到long最大值前就奔溃了。
     */
    public boolean isLimited(String key, long countLimit) {
        Long count = redisTemplate.execute(limitScript, Lists.newArrayList(key));
        return countLimit >= count;
    }

}

使用:PayServiceImpl

/**
 * 支付服务示例
 */
public class PayServiceImpl implements PayService {
    @Autowired
    private RedisLimitUtil redisLimitUtil;

    @Override
    public PayOrder pay(PayRequest request) {
        if (isLimited(request)) {
            throw new RequestLimitedException(buildExceptionMessage(request));
        }

        // 其它业务处理
        ... ...
    }

    /*
     * 限流判断
     */
    private boolean isLimited(PayRequest request) {
        // 限流KEY,这里以[业务类型 + 渠道]举例
        String key = request.getBizType() + request.getChannel();
        // 限流值
        Long countLimit = countLimitMap.get(key);

        // 如果key对应的限流值没有配置,或配置为-1,说明不限流
        if (null == countLimit || -1 == countLimit) {
            return false;
        }

        return redisLimitUtil.isLimited(key + buildTime(), countLimit);
    }
}

注释写得比较清楚,没有什么需要补充的。

6. 结束语

分布式流控有很多实现方案,使用redis实现的固定时间窗口是最简单的方案,而且也非常实用,应付一般的场景已经足够使用。

下一篇会介绍滑动时间窗口算法及实现。

7. 传送门

支付系统设计与实现是一个专业性非常强的领域,里面涉及到的很多设计思路和理论也可以应用到其它行业的软件设计中,比如幂等性,加解密,领域设计思想,状态机设计等。

在《百图解码支付系统设计与实现》的知识宇宙,每一篇深入浅出的文章都是一颗既独立但又彼此强关联的星球,有必要提供一个传送门以便让大家即刻到达想要了解的文章。

专栏地址百图解码支付系统设计与实现
领域相关
支付行业黑话:支付系统必知术语一网打尽
跟着图走,学支付:在线支付系统设计的图解教程
支付交易的三重奏:收单、结算与拒付在支付系统中的协奏曲
在线支付系统的精英搭档:深入剖析收银核心与支付引擎的协同作战(一)
在线支付系统的精英搭档:深入剖析收银核心与支付引擎的协同作战(二)

技术专题
交易流水号的艺术:掌握支付系统的业务ID生成指南
揭密支付安全:为什么你的交易无法被篡改
金融密语:揭秘支付系统的加解密艺术
支付系统日志设计完全指南:构建高效监控和问题排查体系的关键基石
避免重复扣款:分布式支付系统的幂等性原理与实践
支付系统的心脏:简洁而精妙的状态机设计与核心代码实现
精确掌控并发:分布式环境下并发流量控制的设计与实现(一)
精确掌控并发:分布式环境下并发流量控制的设计与实现(二)
金融疆界:在线支付系统渠道网关的创新设计(一)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/321450.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

通过开源端点可见性改善网络安全响应

在当今复杂的数字环境中&#xff0c;企业内的许多不同端点&#xff08;从数据中心的服务器到咖啡店的笔记本电脑&#xff09;创建了巨大且多样化的攻击面。每个设备都存在网络安全威胁的机会&#xff0c;每个设备都有其独特的特征和复杂性。攻击者使用的多种攻击媒介不仅是一个…

详解SpringCloud微服务技术栈:强推!源码跟踪分析Ribbon负载均衡原理、Eureka服务部署

&#x1f468;‍&#x1f393;作者简介&#xff1a;一位大四、研0学生&#xff0c;正在努力准备大四暑假的实习 &#x1f30c;上期文章&#xff1a;详解SpringCloud微服务技术栈&#xff1a;认识微服务、服务拆分与远程调用 &#x1f4da;订阅专栏&#xff1a;微服务技术全家桶…

01 SpringMVC的快速理解

1.1 如图所示&#xff0c;SpringMVC负责表述层&#xff08;控制层Controller&#xff09;实现简化&#xff01; SpringMVC的作用主要覆盖的是表述层&#xff0c;例如&#xff1a; 请求映射、数据输入、视图界面、请求分发、表单回显、会话控制、过滤拦截、异步交互、文件上传…

adb 常用命令汇总

目录 adb 常用命令 1、显示已连接的设备列表 2、进入设备 3、安装 APK 文件到设备 4、卸载指定包名的应用 5、从设备中复制文件到本地 6、将本地文件复制到设备 7、查看设备日志信息 8、重启设备 9、截取设备屏幕截图 10、屏幕分辨率 11、屏幕密度 12、显示设备的…

PyTorch损失函数(二)

损失函数 5、nn.L1Loss nn.L1Loss是一个用于计算输入和目标之间差异的损失函数&#xff0c;它计算输入和目标之间的绝对值差异。 主要参数&#xff1a; reduction&#xff1a;计算模式&#xff0c;可以是none、sum或mean。 none&#xff1a;逐个元素计算损失&#xff0c;返…

书生·浦语大模型实战营笔记(四)

Finetune模型微调 直接使用现成的大语言模型&#xff0c;在某些场景下效果不好&#xff0c;需要根据具体场景进行微调 增量预训练&#xff1a;投喂垂类领域知识 陈述形式&#xff0c;无问答&#xff0c;即只有assistant 指令跟随&#xff1a;system-user-assistant XTuner …

树莓派4B-Python-使用PCA9685控制舵机云台+跟随人脸转动

系列文章 树莓派4B-Python-控制舵机树莓派-Pico控制舵机树莓派4B-Python-使用PCA9685控制舵机云台跟随人脸转动&#xff08;本文章&#xff09; 目录 系列文章前言一、SG90s舵机是什么&#xff1f;二、PCA9685与舵机信号线的接线图三、控制SG90s云台&#xff08;也可用来测试舵…

YOLOv5改进 | 主干篇 | 12月最新成果UniRepLknet特征提取网络(附对比试验效果图)

一、本文介绍 本文给大家带来的改进机制是特征提取网络UniRepLknet,其也是发表于今年12月份的最新特征提取网络,该网络结构的重点在于使用Dilated Reparam Block和大核心指导原则,强调了高效的结构进行通道间通讯和空间聚合,以及使用带扩张的小核心进行重新参数化,该网络…

C++输入输出和文件

文章目录 一. 流, 缓冲区和iostream文件二. 使用cout进行输出1. 用cout进行格式化2. 刷新输出缓冲区 三. 使用cin进行输入1. cin>>如何检查输入2. 流状态3. 其他istream类方法 四. 文件输入和输出1. 简单的文件I/O2. 文件模式3. 随机存取4. 内核格式化 To be continue...…

使用docker搭建LNMP架构

目录 环境准备 下载安装包 服务器环境 任务分析 nginx部分 建立工作目录 编写 Dockerfile 脚本 准备 nginx.conf 配置文件 生成镜像 创建自定义网络 启动镜像容器 验证nginx MySQL部分 建立工作目录 编写 Dockerfile 准备 my.cnf 配置文件 生成镜像 启动镜像…

C语言基础内容(七)——第07章_结构体与共同体

文章目录 第07章_结构体与共用体本章专题脉络1、结构体(struct)类型的基本使用1.1 为什么需要结构体?1.2 结构体的理解1.3 声明结构体1.4 声明结构体变量并调用成员1.5 举例1.6 小 结2、进一步认识结构体2.1 结构体嵌套2.2 结构体占用空间2.3 结构体变量的赋值操作3、结构体数…

JDK8-JDK17版本升级

局部变量类型推断 switch表达式 文本块 Records 记录Records是添加到 Java 14 的一项新功能。它允许你创建用于存储数据的类。它类似于 POJO 类&#xff0c;但代码少得多&#xff1b;大多数开发人员使用 Lombok 生成 POJO 类&#xff0c;但是有了记录&#xff0c;你就不需要使…

保卫战小游戏

欢迎来到程序小院 保卫战 玩法&#xff1a;当鬼子进入射击范围内点击鼠标左键射击&#xff0c;不要让鬼子越过炮台哦&#xff0c;快去杀鬼子去吧^^。开始游戏https://www.ormcc.com/play/gameStart/249 html <div style"position: relative;" id"gameDiv&q…

K 个一组翻转链表(链表反转,固定长度反转)(困难)

优质博文&#xff1a;IT-BLOG-CN 一、题目 给你链表的头节点head&#xff0c;每k个节点一组进行翻转&#xff0c;请你返回修改后的链表。 k是一个正整数&#xff0c;它的值小于或等于链表的长度。如果节点总数不是k的整数倍&#xff0c;那么请将最后剩余的节点保持原有顺序。…

Spring Boot - Application Events 的发布顺序_ApplicationContextInitializedEvent

文章目录 Pre概述Code源码分析 Pre Spring Boot - Application Events 的发布顺序_ApplicationEnvironmentPreparedEvent Spring Boot - Application Events 的发布顺序_ApplicationEnvironmentPreparedEvent 概述 Spring Boot 的广播机制是基于观察者模式实现的&#xff0c…

Spring Boot - 利用Resilience4j-RateLimiter进行流量控制和服务降级

文章目录 Resilience4j概述Resilience4j官方地址Resilience4j-RateLimiter微服务演示Payment processorPOM配置文件ServiceController Payment servicePOMModelServiceRestConfigController配置验证 探究 Rate Limiting请求三次 &#xff0c;观察等待15秒连续访问6次 Resilienc…

安装nodejs出现问题

Error: EPERM: operation not permitted, mkdir… 全局安装express模块进行测试时&#xff1a; npm install express -g出现&#xff1a; 表示nodejs的安装目录无权限&#xff0c;根据错误日志的信息&#xff0c;定位到安装目录下&#xff1a; 点击属性&#xff1a; 点击编…

优先级队列(Priority Queue)

文章目录 优先级队列&#xff08;Priority Queue&#xff09;实现方式基于数组实现基于堆实现方法实现offer(E value)poll()peek()isEmpty()isFull() 优先级队列的实现细节 优先级队列&#xff08;Priority Queue&#xff09; 优先级队列是一种特殊的队列&#xff0c;其中的元素…

Jsqlparser简单学习

文章目录 学习链接模块访问者模式parser模块statement模块Expression模块deparser模块 测试TestDropTestSelectTestSelectVisitor 学习链接 java设计模式&#xff1a;访问者模式 github使用示例参考 测试 JSqlParser使用示例 JSqlParse&#xff08;一&#xff09;基本增删改…

第02章_变量与运算符拓展练习

文章目录 第02章_变量与运算符拓展练习1、辨别标识符2、数据类型转换简答3、判断如下代码的运行结果(难)4、判断如下程序的运行结果5、判断如下程序的运行结果6、Java的基本数据类型有哪些&#xff1f;String是基本数据类型吗&#xff1f;7、语法判断8、char型变量中是否可以存…