基于YOLOv8全系列【n/s/m/l/x】开发构建道路交通场景下CCTSDB2021交通标识检测识别系统

交通标志检测是交通标志识别系统中的一项重要任务。与其他国家的交通标志相比,中国的交通标志有其独特的特点。卷积神经网络(CNN)在计算机视觉任务中取得了突破性进展,在交通标志分类方面取得了巨大的成功。CCTSDB 数据集是由长沙理工大学的相关学者及团队制作而成的,其有交通标志样本图片有近 20000 张,共含交通标志近 40000 个,但目前只公开了其中的 10000 张图片,标注了常见的指示标志、禁令标志及警告标志三大类交通标志。随着时间的更迭有了不同的版本数据集,本文的主要目的就是想要基于yolov8来开发构建CCTSDB2021数据集上的目标检测识别系统,首先看下实例效果:

在前文中我们已经进行了一系列的开发实践了,感兴趣的话可以自行移步阅读即可:

《基于YOLOv3开发构建道路交通场景下CCTSDB2021交通标识检测识别系统》

《基于YOLOv4开发构建道路交通场景下CCTSDB2021交通标识检测识别系统》

《基于YOLOv5全系列参数模型【n/s/m/l/x】开发构建道路交通场景下CCTSDB2021交通标识检测识别系统》

《基于YOLOv6开发构建道路交通场景下CCTSDB2021交通标识检测识别系统》

《基于YOLOv7开发构建道路交通场景下CCTSDB2021交通标识检测识别系统》

在CCTSDB2021数据集中,训练集和正样本测试集中有17856幅图像。图像中的交通标志根据其含义分为强制性、禁止性和警示性。共有16356个训练集图像,编号为00000-18991。正样本测试集有1500张图像,编号为18992-20491。“XML”压缩包存储训练集和正样本测试集的XML格式注释文件。“train_img”压缩包存储训练集图像。“train_labels”压缩包存储训练集的TXT格式注释文件。“test_img”压缩包存储正样本测试集图像。“基于天气和环境的分类”压缩包存储了根据天气和照明条件分类的正样本测试集的XML格式注释文件。“基于交通标志大小的分类”压缩包存储了根据图像中交通标志大小分类的正样本测试集的XML格式注释文件。“负片样本”包含500张负片样本图像。

接下来看下数据集:

如果对YOLOv8开发构建自己的目标检测项目有疑问的可以看下面的文章,如下所示:

《基于YOLOv8开发构建目标检测模型超详细教程【以焊缝质量检测数据场景为例】》

非常详细的开发实践教程。本文这里就不再展开了,因为从YOLOv8开始变成了一个安装包的形式,整体跟v5和v7的使用差异还是比较大的。

YOLOv8核心特性和改动如下:
1、提供了一个全新的SOTA模型(state-of-the-art model),包括 P5 640 和 P6 1280 分辨率的目标检测网络和基于YOLACT的实例分割模型。和 YOLOv5 一样,基于缩放系数也提供了 N/S/M/L/X 尺度的不同大小模型,用于满足不同场景需求
2、骨干网络和 Neck 部分可能参考了 YOLOv7 ELAN 设计思想,将 YOLOv5 的 C3 结构换成了梯度流更丰富的 C2f 结构,并对不同尺度模型调整了不同的通道数,属于对模型结构精心微调,不再是一套参数应用所有模型,大幅提升了模型性能。
3、Head 部分相比 YOLOv5 改动较大,换成了目前主流的解耦头结构,将分类和检测头分离,同时也从Anchor-Based 换成了 Anchor-Free
4、Loss 计算方面采用了TaskAlignedAssigner正样本分配策略,并引入了Distribution Focal Loss
5、训练的数据增强部分引入了 YOLOX 中的最后 10 epoch 关闭 Mosiac 增强的操作,可以有效地提升精度

官方项目地址在这里,如下所示:

目前已经收获超过1.7w的star量了。官方提供的预训练模型如下所示:

Modelsize
(pixels)
mAPval
50-95
Speed
CPU ONNX
(ms)
Speed
A100 TensorRT
(ms)
params
(M)
FLOPs
(B)
YOLOv8n64037.380.40.993.28.7
YOLOv8s64044.9128.41.2011.228.6
YOLOv8m64050.2234.71.8325.978.9
YOLOv8l64052.9375.22.3943.7165.2
YOLOv8x64053.9479.13.5368.2257.8

另外一套预训练模型如:

Modelsize
(pixels)
mAPval
50-95
Speed
CPU ONNX
(ms)
Speed
A100 TensorRT
(ms)
params
(M)
FLOPs
(B)
YOLOv8n64018.4142.41.213.510.5
YOLOv8s64027.7183.11.4011.429.7
YOLOv8m64033.6408.52.2626.280.6
YOLOv8l64034.9596.92.4344.1167.4
YOLOv8x64036.3860.63.5668.7260.6

是基于Open Image V7数据集构建的,可以根据自己的需求进行选择使用即可。

YOLOv8的定位不仅仅是目标检测,而是性能强大全面的工具库,故而在任务类型上同时支持:姿态估计、检测、分类、分割、跟踪多种类型,可以根据自己的需要进行选择使用,这里就不再详细展开了。

简单的实例实现如下所示:

from ultralytics import YOLO
 
# yolov8n
model = YOLO('yolov8n.yaml').load('yolov8n.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)
 
 
# yolov8s
model = YOLO('yolov8s.yaml').load('yolov8s.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)
 
 
# yolov8m
model = YOLO('yolov8m.yaml').load('yolov8m.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)
 
 
# yolov8l
model = YOLO('yolov8l.yaml').load('yolov8l.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)
 
 
# yolov8x
model = YOLO('yolov8x.yaml').load('yolov8x.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)

这里我们依次选择n、s、m、l和x五款不同参数量级的模型来进行开发。

这里给出yolov8的模型文件如下:

# Parameters
nc: 3  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
 
# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9
 
# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 12
 
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 15 (P3/8-small)
 
  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 18 (P4/16-medium)
 
  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 21 (P5/32-large)
 
  - [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)

囊括了五款不同参数量级的模型。在训练结算保持相同的参数设置,等待训练完成后我们横向对比可视化来整体对比分析。

【Precision曲线】
精确率曲线(Precision-Recall Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率曲线。
根据精确率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察精确率曲线,我们可以根据需求确定最佳的阈值,以平衡精确率和召回率。较高的精确率意味着较少的误报,而较高的召回率则表示较少的漏报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
精确率曲线通常与召回率曲线(Recall Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。
召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。
绘制召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的召回率和对应的精确率。
将每个阈值下的召回率和精确率绘制在同一个图表上,形成召回率曲线。
根据召回率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察召回率曲线,我们可以根据需求确定最佳的阈值,以平衡召回率和精确率。较高的召回率表示较少的漏报,而较高的精确率意味着较少的误报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
召回率曲线通常与精确率曲线(Precision Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。
F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。
绘制F1值曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率、召回率和F1分数。
将每个阈值下的精确率、召回率和F1分数绘制在同一个图表上,形成F1值曲线。
根据F1值曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
F1值曲线通常与接收者操作特征曲线(ROC曲线)一起使用,以帮助评估和比较不同模型的性能。它们提供了更全面的分类器性能分析,可以根据具体应用场景来选择合适的模型和阈值设置。

【loss】

综合对比来看:相比之下,n系列的模型效果最低,s系列的模型效果次之,m系列的模型居中,l和x系列的模型效果接近,综合考虑参数量级推理速度,最终我们选择了l系列的模型作为线上的推理模型了。

接下来我们详细看下l系列模型的结果:

【Batch实例】

【训练可视化】

【PR曲线】

开发十分不易,如果了解CCTSDB2021数据集的朋友就会知道想要完成所有参数量级模型的开发训练需要耗费多大的计算资源,感兴趣的话也都可以自行动手实践下!可以选择最为轻量级的n系列的模型去做即可。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/303679.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

CodeGPT,你的智能编码助手—CSDN出品

CodeGPT是由CSDN打造的一款生成式AI产品,专为开发者量身定制。 无论是在学习新技术还是在实际工作中遇到的各类计算机和开发难题,CodeGPT都能提供强大的支持。其涵盖的功能包括代码优化、续写、解释、提问等,还能生成精准的注释和创作相关内…

分布式系统架构设计之分布式消息队列架构解析

分布式消息队列架构是构建在分布式系统之上的消息队列架构,旨在提高高性能、高可用性和可伸缩性。它包括以下架构相关部分: 1、架构优势 分布式消息队列架构的优势主要体现在以下几个方面: 01 高可用性 在分布式消息队列架构中&#xff0…

十九:爬虫最终篇-平安银行商城实战

平安银行商场实战 需求 获取该商城商品信息 目标网址 https://m.yqb.com/bank/product-item-50301196.html?mcId1583912328849970&loginModepab&historyy&sceneModem&traceid30187_4dXJVel1iop详细步骤 1、寻找数据接口 2、对比payload寻找可疑参数 3、多…

上海亚商投顾:沪指再度失守2900点 全市场超4800只个股下跌

上海亚商投顾前言:无惧大盘涨跌,解密龙虎榜资金,跟踪一线游资和机构资金动向,识别短期热点和强势个股。 一.市场情绪 三大指数昨日继续调整,沪指跌超1%再度失守2900点,深成指、创业板指均创出调整新低&…

【算法练习】leetcode算法题合集之二叉树篇

递归遍历基础篇 前序遍历,中序遍历,后序遍历是根据处理根节点的位置来命名的。 树的处理大多用到了递归,递归需要知道终止条件。 前序遍历(中左右) 144.二叉树的前序遍历 中左右,先处理根节点,…

ASP .net core微服务实战

>>>>>>>>>>>>>>开发<<<<<<<<<<<<<<<< 0)用户 用户到nginx之间需要用https&#xff0c;避免被监听。 1)nginx // 做统一的分发&#xff0c;到微服务&#xff0c;相当于网关,提供统…

异常处理:全面覆盖与精细化管理的平衡

异常处理&#xff1a;全面覆盖与精细化管理的平衡 在软件开发中&#xff0c;异常处理是保证系统稳定性和用户体验的重要环节。对于是否应当全面覆盖所有异常并设立兜底机制&#xff0c;业界存在着两种主流思路&#xff1a;全面覆盖原则和精细化处理。如何在这两者间取得平衡&a…

Unity文字转语音(使用RT-Voice PRO [2023.1.0])

参考文章Unity插件——文字转朗读语音RtVioce插件功能/用法/下载_rtvoice-CSDN博客 一、使用步骤 1.导入进Unity&#xff08;插件形式为 .unitypackage&#xff09; https://download.csdn.net/download/luckydog1120446388/88717512 2.添加所需Prefab 1&#xff09;.右键可…

【科技素养题】少儿编程 蓝桥杯青少组科技素养题真题及解析第22套

少儿编程 蓝桥杯青少组科技素养题真题及解析第22套 1、植物的叶子多为绿色,这主要是因为它们含有 A、绿色色素 B、叶绿素 C、花青素 D、细胞 答案:B 考点分析:主要考查小朋友们生物知识的储备;叶绿素是植物叶子中的一种色素,它可以吸收太阳光中的能量并转化为植物所…

【深度学习:Domain Adversarial Neural Networks (DANN) 】领域对抗神经网络简介

【深度学习&#xff1a;Domain Adversarial Neural Networks】领域对抗神经网络简介 前言领域对抗神经网络DANN 模型架构DANN 训练流程DANN示例 GPT示例 前言 领域适应&#xff08;DA&#xff09;指的是当不同数据集的输入分布发生变化&#xff08;这种变化通常被称为共变量变…

synchronized和lock的区别

synchronized和lock的区别 1&#xff09;synchronized是一个关键字&#xff0c;lock是一个java类&#xff1b; 2&#xff09;synchronized无法判断获取锁的状态&#xff0c;lock可以判断是否获取到了锁&#xff1b; 3&#xff09;synchronized会自动释放锁&#xff0c;lock必须…

《罗素论教育》笔记

目录 全书架构 书简介 经典摘录 一、教育的理想 教育的基本原理 教育的目的 二、品性的教育 一岁前的教育 主要是2岁到6岁的教育 三、智力教育 14岁前的课程安排 最后的学年 大学教育 四、结束语 全书架构 书简介 经典摘录 一、教育的理想 教育的基本原理 1、我…

Python从入门到网络爬虫(读写Excel详解)

前言 Python操作Excel的模块有很多&#xff0c;并且各有优劣&#xff0c;不同模块支持的操作和文件类型也有不同。最常用的Excel处理库有xlrd、xlwt、xlutils、xlwings、openpyxl、pandas&#xff0c;下面是各个模块的支持情况&#xff1a; 工具名称.xls.xlsx获取文件内容写入…

LitJson-Json字符串转对像时:整型与字符串或字符串转:整型进的类型不一致的处理

目录 问题描述上代码测试代码各位看官&#xff0c;打赏个1元吧 Json数据格式是大家在游戏开中常量用的一种数据格式&#xff0c;某种程度上可以说是必备的。对unity开发来说&#xff0c;LitJson这个json库应该是被使用最多的json库了。 问题描述 今天说要的其中的这个api: Jso…

2024年中国电子学会青少年编程等级考试安排的通知

各有关单位、全体考生: 中国电子学会青少年等级考试&#xff08;以下简称等级考试&#xff09;是中国电子学会为落实《全民科学素质行动规划纲要》&#xff0c;提升青少年电子信息科学素质水平而开展的社会化评价项目。等级考试自2011年启动以来&#xff0c;作为中国电子学会科…

AGV用120°激光扫描避障雷达传感器DE系列功能与通道切换操作说明

AGV用120激光扫描避障雷达传感器DE系列&#xff0c;包含DE-4211、DE-4611、DE-4311、DE-4511等型号&#xff0c;可帮助AGV/AMR/机器人快速精准地检测障碍物&#xff0c;确保系统运行安全&#xff0c;帮助智能停车系统完成准确的数据判定&#xff0c;实现车位或充电桩占用检测等…

Linux 期末复习

Linux 期末复习 计算机历史 硬件基础 1&#xff0c;计算机硬件的五大部件&#xff1a;控制器、运算器、存储器、输入输出设备 2&#xff0c;cpu分为精简指令集(RISC)和复杂指令集(CISC) 3&#xff0c;硬件只认识0和1&#xff0c;最小单位是bit&#xff0c;最小存储单位是字…

【设计模式】一文理解记住设计模式的原则

目录——阅读所需预计5-10分钟 &#x1f396;️前言&#x1f3af;单一职责原则&#x1f4e3;1. 定义&#x1f49e;2. 定义很抽象&#xff0c;咱继续看&#x1f389;3. 举几个栗子&#x1f49e;4. 以上栗子出现了一个问题&#xff0c;单一职责的划分究竟可以分多细&#x1f449;…

掌握Lazada API接口:开启电商开发新篇章,引领业务增长潮流

一、概述 Lazada API接口是Lazada平台提供的软件开发工具包&#xff0c;它允许第三方开发者通过编程方式访问Lazada平台上的商品、订单、用户等数据&#xff0c;并执行相关操作。通过使用Lazada API接口&#xff0c;开发者可以快速构建与Lazada平台集成的应用程序&#xff0c;…

Ubuntu 18.04.5 LTS 解决安装包复杂依赖相关问题解决的主要法则和VIM的安装实录

前言&#xff1a;目标和环境 环境&#xff1a; Ubuntu 18.04.5 LTSVMware 目标&#xff1a; 安装vim&#xff0c;解决包依赖的冲突&#xff1a; 本文&#xff0c;通过一个很好的实例&#xff0c;诠释了&#xff0c;LINUX系统下&#xff0c;安装一个应用遇到的依赖库问题如何…