mmdetection训练自己的数据集

mmdetection训练自己的数据集

这里写目录标题

  • mmdetection训练自己的数据集
  • 一: 环境搭建
  • 二:数据集格式转换(yolo转coco格式)
    • yolo数据集格式
    • coco数据集格式
    • yolo转coco数据集格式
    • yolo转coco数据集格式的代码
  • 三: 训练
    • dataset数据文件配置
    • configs
      • 1.在configs/faster_rcnn/faster-rcnn_r101_fpn_1x_coco.py我们发现,索引的是'./faster-rcnn_r50_fpn_1x_coco.py'
      • 2.找到'./faster-rcnn_r50_fpn_1x_coco.py',发现索引是下面代码
      • 3.修改
      • 4.训练
  • 五: 还在继续研究的内容

一: 环境搭建

  • 有很多的环境搭建过程,这里就不介绍,我自己也搭建环境了,一会就搭建好了。

二:数据集格式转换(yolo转coco格式)

yolo数据集格式

  • 因为我平时训练目标检测数据集用的YOLO系列,所以数据集格式标签也是txt,在最近接触的mmdetection训练目标检测数据集是需要用到coco格式,所以在这里需要转换数据集的格式。
  • 先来看看yolo数据集标签的格式,图片和标签一一对应的。有多少张图片就有多少张txt文件标签。
    ├── linhuo(这个是数据集名称)
    │ ├── images
    │ │ ├── train
    │ │ │ ├── 1.jpg
    │ │ │ ├── 2.jpg
    │ │ │ ├── …
    │ │ ├── val
    │ │ │ ├── 2000.jpg
    │ │ │ ├── 2001.jpg
    │ │ │ ├── …
    │ │ ├── test
    │ │ │ ├── 3000.jpg
    │ │ │ ├── 30001.jpg
    │ │ │ ├── …
    │ ├── labels
    │ │ ├── train
    │ │ │ ├── 1.xml
    │ │ │ ├── 2.xml
    │ │ │ ├── …
    │ │ ├── val
    │ │ │ ├── 2000.xml
    │ │ │ ├── 2001.xml
    │ │ │ ├── …
    │ │ ├── test
    │ │ │ ├── 3000.xml
    │ │ │ ├── 3001.xml
    │ │ │ ├── …

coco数据集格式

  • coco数据集格式如下:
    ├── data
    │ ├── coco
    │ │ ├── annotations
    │ │ │ ├── instances_train2017.json
    │ │ │ ├── instances_val2017.json
    │ │ ├── train2017
    │ │ ├── val2017
    │ │ ├── test2017

yolo转coco数据集格式

  • 我们需要对yolo的数据集的训练集(train)、验证集(val)、测试集(test)标签分别进行转换生成coco数据集的标签格式(图片相对是不变的)instances_train2017.json、 instances_val2017.json(这里不需要对应的test的标签)
  • 在回顾说明一下需要转换的,和保持相对不变的
  • 保持相对不变的:
  • linhuo/images/train的图片直接复制到train2017
  • linhuo/images/val的图片直接复制到val2017
  • linhuo/images/test的图片直接复制到test2017
  • 需要改变的是:
  • linhuo/labels/train的所有标签需要转换成 instances_train2017.json(coco格式)
  • linhuo/labels/vla的所有标签需要转换成instances_val2017.json(coco格式)

yolo转coco数据集格式的代码

"""
yolo标签:
yolo数据集的标注文件是.txt文件,在label文件夹中每一个.txt文件对应数据集中的一张图片
其中每个.txt文件中的每一行代表图片中的一个目标。
coco标签:
而coco数据集的标注文件是.json文件,全部的数据标注文件由三个.json文件组成:train.json val.json test.json,
其中每个.json文件中包含全部的数据集图片中的所有目标(注意是所有目标不是数据集中的所有张图片)
准备工作:
1. 在根目录下创建coco文件格式对应的文件夹
dataset_coco:
    annotations
    images
    labels
    classes.txt(每一行是自定义数据集中的一个类别)

YOLO 格式的数据集转化为 COCO 格式的数据集
--root_dir 输入根路径
--save_path 保存文件的名字(没有random_split时使用)
--random_split 有则会随机划分数据集,然后再分别保存为3个文件。
--split_by_file 按照 ./train.txt ./val.txt ./test.txt 来对数据集进行划分

运行方式:
 python yolo2coco.py --root_dir ./dataset_coco --random_split
datasetcoco/images: 数据集所有图片
datasetcoco/labels: 数据集yolo标签的txt文件
classes.txt(每一行是自定义数据集中的一个类别)
"""

import os
import cv2
import json
from tqdm import tqdm
from sklearn.model_selection import train_test_split
import argparse


parser = argparse.ArgumentParser()
parser.add_argument('--root_dir', default='./data', type=str,
                    help="root path of images and labels, include ./images and ./labels and classes.txt")
parser.add_argument('--save_path', type=str, default='./train.json',
                    help="if not split the dataset, give a path to a json file")
parser.add_argument('--random_split', action='store_true', help="random split the dataset, default ratio is 8:1:1")
parser.add_argument('--split_by_file', action='store_true',
                    help="define how to split the dataset, include ./train.txt ./val.txt ./test.txt ")

arg = parser.parse_args()


def train_test_val_split_random(img_paths, ratio_train=0.8, ratio_test=0.1, ratio_val=0.1):
    # 这里可以修改数据集划分的比例。
    assert int(ratio_train + ratio_test + ratio_val) == 1
    train_img, middle_img = train_test_split(img_paths, test_size=1 - ratio_train, random_state=233)
    ratio = ratio_val / (1 - ratio_train)
    val_img, test_img = train_test_split(middle_img, test_size=ratio, random_state=233)
    print("NUMS of train:val:test = {}:{}:{}".format(len(train_img), len(val_img), len(test_img)))
    return train_img, val_img, test_img


def train_test_val_split_by_files(img_paths, root_dir):
    # 根据文件 train.txt, val.txt, test.txt(里面写的都是对应集合的图片名字) 来定义训练集、验证集和测试集
    phases = ['train', 'val', 'test']
    img_split = []
    for p in phases:
        define_path = os.path.join(root_dir, f'{p}.txt')
        print(f'Read {p} dataset definition from {define_path}')
        assert os.path.exists(define_path)
        with open(define_path, 'r') as f:
            img_paths = f.readlines()
            # img_paths = [os.path.split(img_path.strip())[1] for img_path in img_paths]  # NOTE 取消这句备注可以读取绝对地址。
            img_split.append(img_paths)
    return img_split[0], img_split[1], img_split[2]


def yolo2coco(arg):
    root_path = arg.root_dir
    print("Loading data from ", root_path)

    assert os.path.exists(root_path)
    originLabelsDir = os.path.join(root_path, 'labels')
    originImagesDir = os.path.join(root_path, 'images')
    with open(os.path.join(root_path, 'classes.txt')) as f:
        classes = f.read().strip().split()
    # images dir name
    indexes = os.listdir(originImagesDir)

    if arg.random_split or arg.split_by_file:
        # 用于保存所有数据的图片信息和标注信息
        train_dataset = {'categories': [], 'annotations': [], 'images': []}
        val_dataset = {'categories': [], 'annotations': [], 'images': []}
        test_dataset = {'categories': [], 'annotations': [], 'images': []}

        # 建立类别标签和数字id的对应关系, 类别id从0开始。
        for i, cls in enumerate(classes, 0):
            train_dataset['categories'].append({'id': i, 'name': cls, 'supercategory': 'mark'})
            val_dataset['categories'].append({'id': i, 'name': cls, 'supercategory': 'mark'})
            test_dataset['categories'].append({'id': i, 'name': cls, 'supercategory': 'mark'})

        if arg.random_split:
            print("spliting mode: random split")
            train_img, val_img, test_img = train_test_val_split_random(indexes, 0.8, 0.1, 0.1)
        elif arg.split_by_file:
            print("spliting mode: split by files")
            train_img, val_img, test_img = train_test_val_split_by_files(indexes, root_path)
    else:
        dataset = {'categories': [], 'annotations': [], 'images': []}
        for i, cls in enumerate(classes, 0):
            dataset['categories'].append({'id': i, 'name': cls, 'supercategory': 'mark'})

    # 标注的id
    ann_id_cnt = 0
    for k, index in enumerate(tqdm(indexes)):
        # 支持 png jpg 格式的图片。
        txtFile = index.replace('images', 'txt').replace('.jpg', '.txt').replace('.png', '.txt')
        # 读取图像的宽和高
        im = cv2.imread(os.path.join(root_path, 'images/') + index)
        height, width, _ = im.shape
        if arg.random_split or arg.split_by_file:
            # 切换dataset的引用对象,从而划分数据集
            if index in train_img:
                dataset = train_dataset
            elif index in val_img:
                dataset = val_dataset
            elif index in test_img:
                dataset = test_dataset
        # 添加图像的信息
        dataset['images'].append({'file_name': index,
                                  'id': k,
                                  'width': width,
                                  'height': height})
        if not os.path.exists(os.path.join(originLabelsDir, txtFile)):
            # 如没标签,跳过,只保留图片信息。
            continue
        with open(os.path.join(originLabelsDir, txtFile), 'r') as fr:
            labelList = fr.readlines()
            for label in labelList:
                label = label.strip().split()
                x = float(label[1])
                y = float(label[2])
                w = float(label[3])
                h = float(label[4])

                # convert x,y,w,h to x1,y1,x2,y2
                H, W, _ = im.shape
                x1 = (x - w / 2) * W
                y1 = (y - h / 2) * H
                x2 = (x + w / 2) * W
                y2 = (y + h / 2) * H
                # 标签序号从0开始计算, coco2017数据集标号混乱,不管它了。
                cls_id = int(label[0])
                width = max(0, x2 - x1)
                height = max(0, y2 - y1)
                dataset['annotations'].append({
                    'area': width * height,
                    'bbox': [x1, y1, width, height],
                    'category_id': cls_id,
                    'id': ann_id_cnt,
                    'image_id': k,
                    'iscrowd': 0,
                    # mask, 矩形是从左上角点按顺时针的四个顶点
                    'segmentation': [[x1, y1, x2, y1, x2, y2, x1, y2]]
                })
                ann_id_cnt += 1

    # 保存结果
    folder = os.path.join(root_path, 'annotations')
    if not os.path.exists(folder):
        os.makedirs(folder)
    if arg.random_split or arg.split_by_file:
        for phase in ['train', 'val', 'test']:
            json_name = os.path.join(root_path, 'annotations/{}.json'.format(phase))
            with open(json_name, 'w') as f:
                if phase == 'train':
                    json.dump(train_dataset, f)
                elif phase == 'val':
                    json.dump(val_dataset, f)
                elif phase == 'test':
                    json.dump(test_dataset, f)
            print('Save annotation to {}'.format(json_name))
    else:
        json_name = os.path.join(root_path, 'annotations/{}'.format(arg.save_path))
        with open(json_name, 'w') as f:
            json.dump(dataset, f)
            print('Save annotation to {}'.format(json_name))


if __name__ == "__main__":
    yolo2coco(arg)


三: 训练

以configs/faster_rcnn/faster-rcnn_r101_fpn_1x_coco.py为例

  • mmdetection-mian创建文件夹data,在将上面转换后的格式进行简单整理如下,放到mmdetection-mian文件下
    在这里插入图片描述

dataset数据文件配置

在路径下面路径中,修改数据集种类为自己数据集的种类。

mmdet/datasets/coco.py

在这里插入图片描述

configs

1.在configs/faster_rcnn/faster-rcnn_r101_fpn_1x_coco.py我们发现,索引的是’./faster-rcnn_r50_fpn_1x_coco.py’

在这里插入图片描述

2.找到’./faster-rcnn_r50_fpn_1x_coco.py’,发现索引是下面代码

在这里插入图片描述

3.修改

_base_ = [
    '../_base_/models/faster-rcnn_r50_fpn.py',
     #指向的是model dict,修改其中的num_classes类别为自己的类别。
    '../_base_/datasets/coco_detection.py',
    # 修改train_dataloader的ann_file为自己数据集json路径,我这里ann_file='annotations/instances_val2017.json',val_dataloader,val_evaluator也要修改ann_file
    '../_base_/schedules/schedule_1x.py', 
    # 优化器,超参数,自己实际情况来
    '../_base_/default_runtime.py'
    # 可以不修改
]

4.训练

  • 若改动框架源代码后,一定要注意重新编译后再使用。类似这里修改了几个源代码文件后再使用train命令之前,先要编译,执行下面命令。
pip install -v -e .  # or "python setup.py develop"
  • 训练语句
python tools/train.py configs/faster_rcnn/faster-rcnn_r101_fpn_1x_coco.py   --work-dir work_dirs_2

五: 还在继续研究的内容

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/303122.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

C#,迭代深化搜索(IDS)或迭代深化深度优先搜索(IDDFS)算法的源代码

摘要:本文介绍适合于大数据规模情况下的,新型的迭代深化深度优先搜索(IDDFS)算法的原理、实例及实现的C#源代码。 引言 常用的树(或图)遍历算法是两种: 广度优先搜索算法(BFS) 和 深度优先搜索…

C#编程-实现文件输入和输出操作

实现文件输入和输出操作 所有程序接受用户的输入、处理输入并且产生输出。所以,所有的编程语言都支持输入和输出操作。例如,您需要为教师开发程序以接受学生的结果信息。您的程序应该将信息保存在硬盘的Result.xls文件中。您可以在程序中使用文件输入和输出操作以接受来自教…

外汇网站主要业务逻辑梳理

上图为工行ICBC的外汇保证金交易界面。 当需要买入帐户欧元(欧元人民币)时,买入100欧元,因为没有杠杆,虽然欧元中间价是782.34,但实际需要支付783.14元人民币的保证金,这个兑换不是真实的外汇兑…

全网独家:基于openeuler-20.03-lts底包构建opengauss数据库V5.0.1LTS的单机容器

近期想测试一下opengauss数据库,官网上单机容器部署只有x86-64平台CentOS 7.6和ARM64平台 openEuler20.03 LTS两种底包方案。本文系全网独家在x86平台上基于openeuler-20.03-lts底包构建opengauss数据库V5.0.1LTS的单机容器。 opengauss官网上单机容器部署只有x86-64平台Cent…

计算机毕业设计 基于javaweb的学生交流培养管理平台/系统的设计与实现 Java实战项目 附源码+文档+视频讲解

博主介绍:✌从事软件开发10年之余,专注于Java技术领域、Python人工智能及数据挖掘、小程序项目开发和Android项目开发等。CSDN、掘金、华为云、InfoQ、阿里云等平台优质作者✌ 🍅文末获取源码联系🍅 👇🏻 精…

910b上跑Chatglm3-6b进行流式输出【pytorch框架】

文章目录 准备阶段避坑阶段添加代码结果展示 准备阶段 配套软件包Ascend-cann-toolkit和Ascend-cann-nnae适配昇腾的Pytorch适配昇腾的Torchvision Adapter下载ChatGLM3代码下载chatglm3-6b模型,或在modelscope里下载 避坑阶段 每个人的服务器都不一样&#xff0…

Unity3d 实现直播功能(无需sdk接入)

Unity3d 实现直播功能 需要插件 :VideoCapture 插件地址(免费的就行) 原理:客户端通过 VideoCapture 插件实现推流nodejs视频流转服务进行转发,播放器实现rtmp拉流 废话不多说,直接上 CaptureSource我选择的是屏幕录制,也可以是其他源 CaptureType选择LIVE–直播形式 LiveSt…

IDEA[Debug]简单说明

目录 🥞1.打断点 🌭2.第一组按钮 🧂3.第二组按钮 🥓4.参数查看 1.打断点 1.在需要断点处打上断点,然后点击debug运行 2.执行debug,直接执行到断点处 2.第一组按钮 共有8按钮,从左往右依…

【系统高级-环境变量】path配置一整行,而不是列表

这是列表编辑方便。但是不知道为什么变成一行,非常的令人抓狂,经过研究发现,第一个环境变量必须为C:\Windows\system32 开头才可以 文章如下 修改环境变量中的一行变成列表形式_环境变量编辑不是列表-CSDN博客

回归预测 | Matlab实现RIME-HKELM霜冰算法优化混合核极限学习机多变量回归预测

回归预测 | Matlab实现RIME-HKELM霜冰算法优化混合核极限学习机多变量回归预测 目录 回归预测 | Matlab实现RIME-HKELM霜冰算法优化混合核极限学习机多变量回归预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab实现RIME-HKELM霜冰算法优化混合核极限学习机多变…

苍穹外卖Day01——总结1

总结1 1. 软件开发整体介绍1.1 软件开发流程1.2 角色分工1.3 软件环境 2. 苍穹外卖项目介绍2.1 项目介绍2.2 技术选项 3. Swagger4. 补充内容(待解决...) 1. 软件开发整体介绍 1.1 软件开发流程 1.2 角色分工 从角色分工里面就可以查看自己以后从事哪一…

芯片命名大全:完整的器件型号包括主体型号、前缀、后缀等!

不少公司的采购会发现,拿到工程师提供的BOM中的器件去采购物料时,经常供应商还会问得更仔细,否则就不知道供给你哪种物料,严重时,采购回来的物料用不了。为什么会有这种情况呢?问题就在于,很多经…

数据结构—图(下)

文章目录 12.图(下)(4).生成树和最小生成树#1.什么是生成树和最小生成树?i.生成树ii.最小生成树 #2.Prim算法i.算法思想ii.看看例子iii.代码实现 #3.Kruskal算法i.算法思想ii.看看例子iii.代码实现 #4.次小生成树 (5).最短路径问题#1.加权有向图的最短路径问题#2.单…

盘点三款服务器运维工具

随着世界变得更加数字化,如何便捷高效地管理服务器变得越来越重要,能有一款简易实用且现代化服务器管理工具就显得尤为关键。今天就选取了三款服务器运维工具进行对比分析,评测每款产品的优缺点。 产品清单 宝塔面板 简介:国内老…

工作流自动化:它是什么,常见示例以及如何实现

由于您的组织旨在留住顶尖人才和高价值客户,因此您需要不断为这两个团队提供一流的体验。 就客户而言,它可以实时解决他们的问题和疑虑,并以深思熟虑、可操作的洞察力主动与他们联系;而且,对于员工来说,它可…

推荐一款强大的AI开源项目!有了它,将你的数据库秒变AI数据库!

前言 在当今数字化的世界中,数据库系统扮演着至关重要的角色。而原生系统的功能我们也大都知晓,无非是一些增删改查、数据优化的使用。但有一些开源工具项目可以帮助我们对数据库降本增效。 在本文中,小编将介绍一个名为SuperDuperDB的开源…

构建多种样式的弹窗(案例)

介绍 本篇Codelab将介绍如何使用弹窗功能,实现四种类型弹窗。分别是:警告弹窗、自定义弹窗、日期滑动选择器弹窗、文本滑动选择器弹窗。需要完成以下功能: 点击左上角返回按钮展示警告弹窗。点击出生日期展示日期滑动选择器弹窗。点击性别展示…

树莓派4B使用ncnn部署yolov5-Lite,推理耗时 247ms 包含前后处理

一. 引言 最近在玩树莓派,想在树莓派上不是一个目标检测算法,大致看了一下,目前开源的大家都在使用yolov5-Lite,使用ncnn去推理加速,于是自己也尝试部署,在此记录一下,个人踩的坑。 二. 版本选…

后端 API 接口文档 Swagger 使用

Swagger 是什么 swagger是一款可以根据 restful 风格生成的接口开发文档,并且支持做测试的一款中间软件。 例如当我们在开发前后端分离项目时,当后端开发完一个功能想要测试时,若此时还没有相应的前端页面发起请求,可以通过 swag…

java回溯算法、最短路径算法、最小生成树算法

回溯算法 回溯算法实际上一个类似枚举的搜索尝试过程,主要是在搜索尝试过程中寻找问题的解,当发现已不满足求解条件时,就“回溯”返回,尝试别的路径。 最短路径算法 从某顶点出发,沿图的边到达另一顶点所经过的路径中…