树莓派4B使用ncnn部署yolov5-Lite,推理耗时 247ms 包含前后处理

一. 引言

最近在玩树莓派,想在树莓派上不是一个目标检测算法,大致看了一下,目前开源的大家都在使用yolov5-Lite,使用ncnn去推理加速,于是自己也尝试部署,在此记录一下,个人踩的坑。

二. 版本选择

这个非常重要,非常重要,非常重要

1. ncnn版本

一定要下载这个版本的ncnn
本人ncnn版本是20210525版本的,其他版本试过几个都不行,强烈推荐这个版本。ncnn版本连接https://github.com/Tencent/ncnn/tree/20210525

下载

git clone https://github.com/Tencent/ncnn.git

安装依赖

sudo apt-get install -y gfortran
sudo apt-get install -y libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler
sudo apt-get install --no-install-recommends libboost-all-dev
sudo apt-get install -y libgflags-dev libgoogle-glog-dev liblmdb-dev libatlas-base-dev

编译ncnn

cd ~/ncnn
mkdir build
cmake ..
make -j4
make install

2. yolov5-Lite版本

由于作者版本更新,我目前使用最新的版本时候,有一些bug在ncnn上,没来及修改,于是我使用了之前的版本。推荐这个版本 yolov5-Lite版本 https://github.com/ppogg/YOLOv5-Lite/tree/v1.4

下载

git clone https://github.com/ppogg/YOLOv5-Lite.git

安装依赖

建议按照作者提供的requirements.txt,尤其是pytorch版本一定要低于1.10版本,不然在模型导出,训练时候会报错,pytorch错误。

# pip install -r requirements.txt

# base ----------------------------------------
matplotlib>=3.2.2
numpy>=1.18.5
opencv-python>=4.1.2
Pillow
PyYAML>=5.3.1
scipy>=1.4.1
torch>=1.8.0
torchvision>=0.9.0
tqdm>=4.41.0

# logging -------------------------------------
tensorboard>=2.4.1
# wandb

# plotting ------------------------------------
seaborn>=0.11.0
pandas

# export --------------------------------------
# coremltools>=4.1
# onnx>=1.9.1
# scikit-learn==0.19.2  # for coreml quantization

# extras --------------------------------------
thop  # FLOPS computation
pycocotools>=2.0  # COCO mAP

pytorch版本过高于1.10,会出现如下错误
torch版本过高

三.模型转换

1. pt 转 onnx

cd ~/yolov5-Lite-1.4/
python3 export --weights "./best.pt" --batch-size 1 --img-size 320

使用onnx-simplifier对onnx进行简化

pip3 install onnx-simplifier
python -m onnxsim best.onnx best-sim.onnx

2. ncnn 模型转换

cd ~/ncnn/build/tools
./onnx2ncnn ./best-sim.onnx ./best-sim.param ./best-sim.bin
转化成fp16
./ncnnoptimize ./best-sim.param ./best-sim.bin ./best-sim-fp16.param ./best-sim-fp16.bin 65536
其中65536 是设置模型转为f16开关

65536来自源码 vim ~/ncnn/tools/ncnnoptimize.cpp
fl16 设置源码

3. 修改best-sim.param文件

param修改
三个输出层的Reshape维度需要修改成-1

修改前:
Reshape  Reshape_468 1 1 632 650 0=6400 1=85 2=3
Reshape  Reshape_484 1 1 652 670 0=1600 1=85 2=3
Reshape  Reshape_500 1 1 672 690 0=400 1=85 2=3
修改后:
Reshape  Reshape_468 1 1 632 650 0=-1 1=85 2=3
Reshape  Reshape_484 1 1 652 670 0=-1 1=85 2=3
Reshape  Reshape_500 1 1 672 690 0=-1 1=85 2=3
632 表示输入层名称 650 表示输出层名称 0表示为第1维度个数 1表示第2维度个数 2表示第3个数

4.修改v5lite-s.cpp源码

#include "layer.h"
#include "net.h"
 
#if defined(USE_NCNN_SIMPLEOCV)
#include "simpleocv.h"
#else
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#endif
#include <float.h>
#include <stdio.h>
#include <vector>
#include <sys/time.h>
 
#include <iostream>  
#include <chrono>  
#include <opencv2/opencv.hpp>  
 
using namespace std;  
using namespace cv;  
using namespace std::chrono;  
 
// 0 : FP16
// 1 : INT8
#define USE_INT8 0
 
// 0 : Image
// 1 : Camera
#define USE_CAMERA 0
 
struct Object
{
    cv::Rect_<float> rect;
    int label;
    float prob;
};
 
static inline float intersection_area(const Object& a, const Object& b)
{
    cv::Rect_<float> inter = a.rect & b.rect;
    return inter.area();
}
 
static void qsort_descent_inplace(std::vector<Object>& faceobjects, int left, int right)
{
    int i = left;
    int j = right;
    float p = faceobjects[(left + right) / 2].prob;
 
    while (i <= j)
    {
        while (faceobjects[i].prob > p)
            i++;
 
        while (faceobjects[j].prob < p)
            j--;
 
        if (i <= j)
        {
            // swap
            std::swap(faceobjects[i], faceobjects[j]);
 
            i++;
            j--;
        }
    }
 
    #pragma omp parallel sections
    {
        #pragma omp section
        {
            if (left < j) qsort_descent_inplace(faceobjects, left, j);
        }
        #pragma omp section
        {
            if (i < right) qsort_descent_inplace(faceobjects, i, right);
        }
    }
}
 
static void qsort_descent_inplace(std::vector<Object>& faceobjects)
{
    if (faceobjects.empty())
        return;
 
    qsort_descent_inplace(faceobjects, 0, faceobjects.size() - 1);
}
 
static void nms_sorted_bboxes(const std::vector<Object>& faceobjects, std::vector<int>& picked, float nms_threshold)
{
    picked.clear();
 
    const int n = faceobjects.size();
 
    std::vector<float> areas(n);
    for (int i = 0; i < n; i++)
    {
        areas[i] = faceobjects[i].rect.area();
    }
 
    for (int i = 0; i < n; i++)
    {
        const Object& a = faceobjects[i];
 
        int keep = 1;
        for (int j = 0; j < (int)picked.size(); j++)
        {
            const Object& b = faceobjects[picked[j]];
 
            // intersection over union
            float inter_area = intersection_area(a, b);
            float union_area = areas[i] + areas[picked[j]] - inter_area;
            // float IoU = inter_area / union_area
            if (inter_area / union_area > nms_threshold)
                keep = 0;
        }
 
        if (keep)
            picked.push_back(i);
    }
}
 
static inline float sigmoid(float x)
{
    return static_cast<float>(1.f / (1.f + exp(-x)));
}
 
// unsigmoid
static inline float unsigmoid(float y) {
    return static_cast<float>(-1.0 * (log((1.0 / y) - 1.0)));
}
 
static void generate_proposals(const ncnn::Mat &anchors, int stride, const ncnn::Mat &in_pad,
                               const ncnn::Mat &feat_blob, float prob_threshold,
                               std::vector <Object> &objects) {
    const int num_grid = feat_blob.h;
    float unsig_pro = 0;
    if (prob_threshold > 0.6)
        unsig_pro = unsigmoid(prob_threshold);
 
    int num_grid_x;
    int num_grid_y;
    if (in_pad.w > in_pad.h) {
        num_grid_x = in_pad.w / stride;
        num_grid_y = num_grid / num_grid_x;
    } else {
        num_grid_y = in_pad.h / stride;
        num_grid_x = num_grid / num_grid_y;
    }
 
    const int num_class = feat_blob.w - 5;
 
    const int num_anchors = anchors.w / 2;
 
    for (int q = 0; q < num_anchors; q++) {
        const float anchor_w = anchors[q * 2];
        const float anchor_h = anchors[q * 2 + 1];
 
        const ncnn::Mat feat = feat_blob.channel(q);
 
        for (int i = 0; i < num_grid_y; i++) {
            for (int j = 0; j < num_grid_x; j++) {
                const float *featptr = feat.row(i * num_grid_x + j);
 
                // find class index with max class score
                int class_index = 0;
                float class_score = -FLT_MAX;
                float box_score = featptr[4];
                if (prob_threshold > 0.6) {
                    // while prob_threshold > 0.6, unsigmoid better than sigmoid
                    if (box_score > unsig_pro) {
                        for (int k = 0; k < num_class; k++) {
                            float score = featptr[5 + k];
                            if (score > class_score) {
                                class_index = k;
                                class_score = score;
                            }
                        }
 
                        float confidence = sigmoid(box_score) * sigmoid(class_score);
 
                        if (confidence >= prob_threshold) {
 
                            float dx = sigmoid(featptr[0]);
                            float dy = sigmoid(featptr[1]);
                            float dw = sigmoid(featptr[2]);
                            float dh = sigmoid(featptr[3]);
 
                            float pb_cx = (dx * 2.f - 0.5f + j) * stride;
                            float pb_cy = (dy * 2.f - 0.5f + i) * stride;
 
                            float pb_w = pow(dw * 2.f, 2) * anchor_w;
                            float pb_h = pow(dh * 2.f, 2) * anchor_h;
 
                            float x0 = pb_cx - pb_w * 0.5f;
                            float y0 = pb_cy - pb_h * 0.5f;
                            float x1 = pb_cx + pb_w * 0.5f;
                            float y1 = pb_cy + pb_h * 0.5f;
 
                            Object obj;
                            obj.rect.x = x0;
                            obj.rect.y = y0;
                            obj.rect.width = x1 - x0;
                            obj.rect.height = y1 - y0;
                            obj.label = class_index;
                            obj.prob = confidence;
 
                            objects.push_back(obj);
                        }
                    } else {
                        for (int k = 0; k < num_class; k++) {
                            float score = featptr[5 + k];
                            if (score > class_score) {
                                class_index = k;
                                class_score = score;
                            }
                        }
                        float confidence = sigmoid(box_score) * sigmoid(class_score);
 
                        if (confidence >= prob_threshold) {
                            float dx = sigmoid(featptr[0]);
                            float dy = sigmoid(featptr[1]);
                            float dw = sigmoid(featptr[2]);
                            float dh = sigmoid(featptr[3]);
 
                            float pb_cx = (dx * 2.f - 0.5f + j) * stride;
                            float pb_cy = (dy * 2.f - 0.5f + i) * stride;
 
                            float pb_w = pow(dw * 2.f, 2) * anchor_w;
                            float pb_h = pow(dh * 2.f, 2) * anchor_h;
 
                            float x0 = pb_cx - pb_w * 0.5f;
                            float y0 = pb_cy - pb_h * 0.5f;
                            float x1 = pb_cx + pb_w * 0.5f;
                            float y1 = pb_cy + pb_h * 0.5f;
 
                            Object obj;
                            obj.rect.x = x0;
                            obj.rect.y = y0;
                            obj.rect.width = x1 - x0;
                            obj.rect.height = y1 - y0;
                            obj.label = class_index;
                            obj.prob = confidence;
 
                            objects.push_back(obj);
                        }
                    }
                }
            }
        }
    }
}
 
static int detect_yolov5(const cv::Mat& bgr, std::vector<Object>& objects)
{
    ncnn::Net yolov5;
 
#if USE_INT8
    yolov5.opt.use_int8_inference=true;
#else
    yolov5.opt.use_vulkan_compute = true;
    yolov5.opt.use_bf16_storage = true;
#endif
 
    // original pretrained model from https://github.com/ultralytics/yolov5
    // the ncnn model https://github.com/nihui/ncnn-assets/tree/master/models
 
#if USE_INT8
    yolov5.load_param("~/ncnn/build/best-sim-int8.param");
    yolov5.load_model("~/ncnn/build/best-sim-int8.bin");
#else
    yolov5.load_param("~/ncnn/build/best-sim-fp16.param");
    yolov5.load_model("~/ncnn/build/best-sim-fp16.bin");
#endif
 
    const int target_size = 320;
    const float prob_threshold = 0.60f;
    const float nms_threshold = 0.60f;
 
    int img_w = bgr.cols;
    int img_h = bgr.rows;
 
    // letterbox pad to multiple of 32
    int w = img_w;
    int h = img_h;
    float scale = 1.f;
    if (w > h)
    {
        scale = (float)target_size / w;
        w = target_size;
        h = h * scale;
    }
    else
    {
        scale = (float)target_size / h;
        h = target_size;
        w = w * scale;
    }
 
    ncnn::Mat in = ncnn::Mat::from_pixels_resize(bgr.data, ncnn::Mat::PIXEL_BGR2RGB, img_w, img_h, w, h);
 
    // pad to target_size rectangle
    // yolov5/utils/datasets.py letterbox
    int wpad = (w + 31) / 32 * 32 - w;
    int hpad = (h + 31) / 32 * 32 - h;
    ncnn::Mat in_pad;
    ncnn::copy_make_border(in, in_pad, hpad / 2, hpad - hpad / 2, wpad / 2, wpad - wpad / 2, ncnn::BORDER_CONSTANT, 114.f);
 
    const float norm_vals[3] = {1 / 255.f, 1 / 255.f, 1 / 255.f};
    in_pad.substract_mean_normalize(0, norm_vals);
 
    ncnn::Extractor ex = yolov5.create_extractor();
 
    ex.input("images", in_pad);
 
    std::vector<Object> proposals;
 
    // stride 8
    {
        ncnn::Mat out;
        ex.extract("output", out);
 
        ncnn::Mat anchors(6);
        anchors[0] = 10.f;
        anchors[1] = 13.f;
        anchors[2] = 16.f;
        anchors[3] = 30.f;
        anchors[4] = 33.f;
        anchors[5] = 23.f;
 
        std::vector<Object> objects8;
        generate_proposals(anchors, 8, in_pad, out, prob_threshold, objects8);
 
        proposals.insert(proposals.end(), objects8.begin(), objects8.end());
    }
    // stride 16
    {
        ncnn::Mat out;
        ex.extract("671", out);
 
 
        ncnn::Mat anchors(6);
        anchors[0] = 30.f;
        anchors[1] = 61.f;
        anchors[2] = 62.f;
        anchors[3] = 45.f;
        anchors[4] = 59.f;
        anchors[5] = 119.f;
 
        std::vector<Object> objects16;
        generate_proposals(anchors, 16, in_pad, out, prob_threshold, objects16);
 
        proposals.insert(proposals.end(), objects16.begin(), objects16.end());
    }
    // stride 32
    {
        ncnn::Mat out;
        ex.extract("691", out);
 
 
        ncnn::Mat anchors(6);
        anchors[0] = 116.f;
        anchors[1] = 90.f;
        anchors[2] = 156.f;
        anchors[3] = 198.f;
        anchors[4] = 373.f;
        anchors[5] = 326.f;
 
        std::vector<Object> objects32;
        generate_proposals(anchors, 32, in_pad, out, prob_threshold, objects32);
 
        proposals.insert(proposals.end(), objects32.begin(), objects32.end());
    }
 
    // sort all proposals by score from highest to lowest
    qsort_descent_inplace(proposals);
 
    // apply nms with nms_threshold
    std::vector<int> picked;
    nms_sorted_bboxes(proposals, picked, nms_threshold);
 
    int count = picked.size();
 
    objects.resize(count);
    for (int i = 0; i < count; i++)
    {
        objects[i] = proposals[picked[i]];
 
        // adjust offset to original unpadded
        float x0 = (objects[i].rect.x - (wpad / 2)) / scale;
        float y0 = (objects[i].rect.y - (hpad / 2)) / scale;
        float x1 = (objects[i].rect.x + objects[i].rect.width - (wpad / 2)) / scale;
        float y1 = (objects[i].rect.y + objects[i].rect.height - (hpad / 2)) / scale;
 
        // clip
        x0 = std::max(std::min(x0, (float)(img_w - 1)), 0.f);
        y0 = std::max(std::min(y0, (float)(img_h - 1)), 0.f);
        x1 = std::max(std::min(x1, (float)(img_w - 1)), 0.f);
        y1 = std::max(std::min(y1, (float)(img_h - 1)), 0.f);
 
        objects[i].rect.x = x0;
        objects[i].rect.y = y0;
        objects[i].rect.width = x1 - x0;
        objects[i].rect.height = y1 - y0;
    }
 
    return 0;
}
 
static void draw_objects(const cv::Mat& bgr, const std::vector<Object>& objects)
{
    static const char* class_names[] = {
        "person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light",
        "fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow",
        "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee",
        "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard",
        "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple",
        "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch",
        "potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone",
        "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear",
        "hair drier", "toothbrush"
    };
 
    cv::Mat image = bgr.clone();
 
    for (size_t i = 0; i < objects.size(); i++)
    {
        const Object& obj = objects[i];
 
        fprintf(stderr, "%d = %.5f at %.2f %.2f %.2f x %.2f\n", obj.label, obj.prob,
                obj.rect.x, obj.rect.y, obj.rect.width, obj.rect.height);
 
        cv::rectangle(image, obj.rect, cv::Scalar(0, 255, 0));
 
        char text[256];
        sprintf(text, "%s %.1f%%", class_names[obj.label], obj.prob * 100);
 
        int baseLine = 0;
        cv::Size label_size = cv::getTextSize(text, cv::FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
 
        int x = obj.rect.x;
        int y = obj.rect.y - label_size.height - baseLine;
        if (y < 0)
            y = 0;
        if (x + label_size.width > image.cols)
            x = image.cols - label_size.width;
 
        cv::rectangle(image, cv::Rect(cv::Point(x, y), cv::Size(label_size.width, label_size.height + baseLine)),
                      cv::Scalar(255, 255, 255), -1);
 
        cv::putText(image, text, cv::Point(x, y + label_size.height),
                    cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(0, 0, 0)); 
                    
       // cv::putText(image, to_string(fps), cv::Point(100, 100),             //FPS
                    //cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(0, 0, 0)); 
        
    }
#if USE_CAMERA
    imshow("camera", image);
    cv::waitKey(1);
#else
    cv::imwrite("result.jpg", image);
#endif
}
 
#if USE_CAMERA
int main(int argc, char** argv)
{
    cv::VideoCapture capture;
    capture.open(0);  //修改这个参数可以选择打开想要用的摄像头
 
    cv::Mat frame;
    
    //111
    int FPS = 0;  
    int total_frames = 0;  
    high_resolution_clock::time_point t1, t2; 
    
    
    while (true)
    {
        capture >> frame;
        cv::Mat m = frame;
        cv::Mat f = frame;
 
        std::vector<Object> objects;
        
        auto start_time = std::chrono::high_resolution_clock::now();  // 记录开始时间 
        
        detect_yolov5(frame, objects);
 
        auto end_time = std::chrono::high_resolution_clock::now();  // 记录结束时间  
        auto duration = std::chrono::duration_cast<std::chrono::milliseconds>(end_time - start_time);  // 计算执行时间 
        
        float fps = (float)(1000)/duration.count();
 
        draw_objects(m, objects);
        cout << "FPS: " << fps << endl;  
        
        //int fps = 1000/duration.count();
        //int x = m.cols-50;
        //int y = m.rows-50;
        //cv::putText(f, to_string(fps), cv::Point(100, 100), cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(0, 0, 0)); 
        
        //if (cv::waitKey(30) >= 0)
            //break;
            
    }
}
#else
int main(int argc, char** argv)
{
    if (argc != 2)
    {
        fprintf(stderr, "Usage: %s [imagepath]\n", argv[0]);
        return -1;
    }
 
    const char* imagepath = argv[1];
 
    struct timespec begin, end;
    long time;
    clock_gettime(CLOCK_MONOTONIC, &begin);
 
    cv::Mat m = cv::imread(imagepath, 1);
    if (m.empty())
    {
        fprintf(stderr, "cv::imread %s failed\n", imagepath);
        return -1;
    }
 
    std::vector<Object> objects;
    detect_yolov5(m, objects);
 
    clock_gettime(CLOCK_MONOTONIC, &end);
    time = (end.tv_sec - begin.tv_sec) + (end.tv_nsec - begin.tv_nsec);
    printf(">> Time : %lf ms\n", (double)time/1000000);
 
    draw_objects(m, objects);
 
    return 0;
}
#endif

修改代码中一些参数
在这里插入图片描述

ex.extract("output", out)
其中“output”对应best-sim-fl16.param中如下
Permute Transpose_469 1 1 650 output 0=1

在这里插入图片描述

ex.extract("671", out)
其中“671”对应best-sim-fl16.param中如下
Permute Transpose_485 1 1 670 671 0=1

在这里插入图片描述

ex.extract("691", out)
其中“691”对应best-sim-fl16.param中如下
Permute Transpose_501 1 1 690 691 0=1

由于anchors是官方训练的,可以不用修改,但是自己训练自己数据集一定要修改anchors,修改anchors,修改anchors

ncnn::Mat anchors(6);
        anchors[0] = 10.f;
        anchors[1] = 13.f;
        anchors[2] = 16.f;
        anchors[3] = 30.f;
        anchors[4] = 33.f;
        anchors[5] = 23.f;

anchors[0] = 30.f;
        anchors[1] = 61.f;
        anchors[2] = 62.f;
        anchors[3] = 45.f;
        anchors[4] = 59.f;
        anchors[5] = 119.f;

anchors[0] = 116.f;
        anchors[1] = 90.f;
        anchors[2] = 156.f;
        anchors[3] = 198.f;
        anchors[4] = 373.f;
        anchors[5] = 326.f;

四.编译v5lite-s.cpp

设置ncnn_DIR路径
export ncnn_DIR=~/ncnn/build/install/lib/cmake/ncnn

创建test目录

cd ~/ncnn
mdkir test

编写CMakeLists.txt

project(YOLOv5s)

cmake_minimum_required(VERSION 3.10.2)

# set(ncnn_DIR "/xxx/path/to/ncnn/xxx/lib/cmake/ncnn")

find_package(ncnn REQUIRED)
find_package(OpenCV REQUIRED)

add_executable(ncnnv5lite v5lite-s.cpp)

target_link_libraries(ncnnv5lite ncnn ${OpenCV_LIBS})

把刚刚编写好的v5lite-s.cpp放在test目录中

cp ~/ncnn/v5lite-s.cpp ~/ncnn/test/

编译

mkdir build
cmake ..
make -j4

五. 推理结果

在这里插入图片描述
推理耗时 247ms 包含前后处理
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/303093.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

后端 API 接口文档 Swagger 使用

Swagger 是什么 swagger是一款可以根据 restful 风格生成的接口开发文档&#xff0c;并且支持做测试的一款中间软件。 例如当我们在开发前后端分离项目时&#xff0c;当后端开发完一个功能想要测试时&#xff0c;若此时还没有相应的前端页面发起请求&#xff0c;可以通过 swag…

java回溯算法、最短路径算法、最小生成树算法

回溯算法 回溯算法实际上一个类似枚举的搜索尝试过程&#xff0c;主要是在搜索尝试过程中寻找问题的解&#xff0c;当发现已不满足求解条件时&#xff0c;就“回溯”返回&#xff0c;尝试别的路径。 最短路径算法 从某顶点出发&#xff0c;沿图的边到达另一顶点所经过的路径中…

【QML COOK】- 002-添加一个图片

1. 编辑main.qml import QtQuickWindow {width: 800height: 800visible: truetitle: qsTr("Hello World")Image {anchors.fill: parentsource: "qrc:/Resources/Images/arrow.png"} }将Window的width和height都改成800&#xff0c;因为我们要添加的图片大…

Spring AOP概念

什么是 AOP &#xff1f; AOP 为 Aspect Oriented Programming 的缩写&#xff0c;意为&#xff1a;面向切面编程&#xff0c;通过预编译方式和运行期动态代理实现程序功能的统一维护的一种技术。AOP 是 OOP 的延续&#xff0c;是软件开发中的一个热点&#xff0c;也是 Spring …

Mac 环境多JDK安装与切换

一、下载jdk 去Oracle官网上下载想要安装的jdk版本&#xff0c;M芯片选择arm架构的.bmg格式的文件。 https://www.oracle.com/java/technologies/downloads/。 二、安装jdk 2.1 双击下载的文件&#xff0c;安装步骤一步步点继续就好。 2.2 安装完成后会在/Library/Java/JavaV…

常见测试技术都有哪些?

测试技术是用于评估系统或组件的方法&#xff0c;目的是发现它是否满足给定的要求。系统测试有助于识别缺口、错误&#xff0c;或与实际需求不同的任何类型的缺失需求。测试技术是测试团队根据给定的需求评估已开发软件所使用的最佳实践。这些技术可以确保产品或软件的整体质量…

2024年甘肃省职业院校技能大赛 高职学生组电子与信息大类信息安全管理与评估赛项样题卷①

2024年甘肃省职业院校技能大赛 高职学生组电子与信息大类信息安全管理与评估赛项样题 第一阶段&#xff1a;第二阶段&#xff1a;模块二 网络安全事件响应、数字取证调查、应用程序安全第二阶段 网络安全事件响应第一部分 网络安全事件响应第二部分 数字取证调查第三部分 应用程…

网络通信(12)-C#TCP客户端封装帮助类实例

本文使用Socket在C#语言环境下完成TCP客户端封装帮助类的实例。 实例完成的功能: 客户端与服务器连接,实现实时刷新状态。 客户端接收服务器的数据。 客户端发送给服务器的数据。 客户端实时判定状态,断开连接后自动重连。 客户端与服务器端发送心跳包。 在VS中创建C…

电商引流模式:广告电商

广告电商模式是一种将广告收入与电商业务相结合的商业模式。在这种模式下&#xff0c;电商企业通过向消费者提供免费或低价的商品或服务&#xff0c;吸引大量用户关注和参与。同时&#xff0c;电商企业通过与广告主合作&#xff0c;将广告投放到自己的平台上&#xff0c;通过广…

接口工具Apifox

最近发现一款接口测试工具--apifox&#xff0c;我我们很难将它描述为一款接口管理工具 或 接口自测试工具。 官方给了一个简单的公式&#xff0c;更能说明apifox可以做什么。 Apifox Postman Swagger Mock JMeter Apifox的特点&#xff1a; 接口文档定义&#xff1a; Apif…

1.8.。。

1 有道云笔记 2 #include "mywidget.h"myWidget::myWidget(QWidget *parent): QWidget(parent) {//设置窗口大小&#xff0c;背景颜色&#xff0c;纯净窗口this->setFixedSize(700,500);this->setStyleSheet("background-color:white");this->…

Dockerfile基本结构及编写详解

文章目录 1 Dockerfile1.1 Dockerfile的基本结构1.2 Dockerfile文件说明1.3 Dockerfile常见命令1.4 build命令1.5 部署微服务1.6 docker-compose部署 1 Dockerfile ​ Dockerfile其实就是我们用来构建Docker镜像的源码&#xff0c;当然这不是所谓的编程源码&#xff0c;而是一…

深入了解Pytest中的Mocking:简化测试,避免依赖问题!

在软件开发中&#xff0c;测试是确保代码质量的关键步骤之一。而在测试中&#xff0c;经常需要模拟&#xff08;Mock&#xff09;一些对象或函数&#xff0c;以确保测试的独立性和可靠性。在Pytest中&#xff0c;Mocking是一个强大的工具&#xff0c;能够简化测试过程&#xff…

【Docker】部署mysql 和 tomcat

目录 部署MySQL 1.搜索镜像 2. 拉取镜像 部署Tomcat 1. 搜索镜像 2.拉取镜像 3.查看镜像 部署MySQL 1.搜索镜像 docker search mysql 2. 拉取镜像 通过mysql 镜像创建对应的容器&#xff0c;并设置端口映射&#xff0c;目录映射 创建mysql 的目录 docker run -id \ …

【PostgreSQL】在DBeaver中实现序列、函数、视图、触发器设计

【PostgreSQL】在DBeaver中实现序列、函数、触发器、视图设计 基本配置一、序列1.1、序列使用1.1.1、设置字段为主键&#xff0c;数据类型默认整型1.1.2、自定义序列&#xff0c;数据类型自定义 1.2、序列延申1.2.1、理论1.2.2、测试1.2.3、小结 二、函数2.1、SQL直接创建2.1.1…

20240108移远的4G模块EC20在Firefly的AIO-3399J开发板的Android11下调通的步骤

20240108移远的4G模块EC20在Firefly的AIO-3399J开发板的Android11下调通的步骤 2024/1/8 17:50 缘起&#xff1a;使用友善之臂的Android11可以让EC20上网&#xff0c;但是同样的修改步骤&#xff0c;Toybrick的Android11不能让EC20上网。最后确认是selinux的问题&#xff01; …

DDIM学习笔记

写在前面&#xff1a; &#xff08;1&#xff09;建议看这篇论文之前&#xff0c;可先看我写的前一篇论文&#xff1a; DDPM推导笔记-大白话推导 主要学习和参考了以下文章&#xff1a; &#xff08;1&#xff09;一文带你看懂DDPM和DDIM &#xff08;2&#xff09;关于 DDIM …

如何优雅的搭建一个轻量化的网站

本地网页 这里我找到了一个带有简单的悬停变色效果的个人博客网站模板。用来演示这次的轻量化网站搭建。你可以复制这段代码到一个txt文件中&#xff0c;修改文件后缀名为html即可得到一个最简单的静态网页文件。在没有搭建网站服务器时&#xff0c;本机可以通过直接双击该文件…

设计模式的艺术P1基础—2.3 类之间的关系

设计模式的艺术P1基础—2.3 类之间的关系 在软件系统中&#xff0c;类并不是孤立存在的&#xff0c;类与类之间存在各种关系。对于不同类型的关系&#xff0c;UML提供了不同的表示方式 1&#xff0e;关联关系 关联&#xff08;Association&#xff09;关系是类与类之间最常用…

AR眼镜定制_ar智能眼镜5G硬件解决方案

AR眼镜近年来备受瞩目&#xff0c;其易于佩戴、轻巧耐用、功能强大、用途广泛的特点受到了广泛关注。 AR眼镜的应用场景非常广泛&#xff0c;不仅包括消费级市场&#xff0c;还涵盖了旅游、教育、工业、医疗等多个领域。新的工业AR穿戴技术以及工业级语音交互操作系统&#xff…