基于哈里斯鹰算法优化的Elman神经网络数据预测 - 附代码

基于哈里斯鹰算法优化的Elman神经网络数据预测 - 附代码

文章目录

  • 基于哈里斯鹰算法优化的Elman神经网络数据预测 - 附代码
    • 1.Elman 神经网络结构
    • 2.Elman 神经用络学习过程
    • 3.电力负荷预测概述
      • 3.1 模型建立
    • 4.基于哈里斯鹰优化的Elman网络
    • 5.测试结果
    • 6.参考文献
    • 7.Matlab代码

摘要:针对Elman神经网络,初始权值阈值盲目随机性的缺点。采用哈里斯鹰算法对ELman的阈值和权值进行优化。利用电力负荷预测模型进行测试,结果表明改进后的神经网络预测性能更佳。

1.Elman 神经网络结构

Elman 型神经网络一般分为四层:输入层、隐含层(中间层)、承接层和输出层 。 如图 1所示。输入层、隐含层、输出层的连接类似于前馈式网络 ,输入层的单元仅起信号传输作用,输出层单元起线性加权作用。隐含层单元的传递函数可采用线性或非线性函数,承接层又称上 下文层或状态层,它用来记忆隐含层单元前一时刻的输出值并返回给网络的输入 , 可以认为是 一个一步延时算子。

Elman 神经网络的特点是隐含层的输出通过承接层的延迟与存储,自联到隐含层的输入。 这种自联方式使其对历史状态的数据具有敏感性,内部反馈网络的加入增强了网络本身处理动态信息的能力 ,从而达到动态建模的目的。此外, Elman 神经网络能够以任意精度逼近任意非线性映射,可以不考虑外部噪声对系统影响的具体形式,如果给出系统的输入输出数据对 , 就可以对系统进行建模 。

在这里插入图片描述

图1.Elman网络结构

2.Elman 神经用络学习过程

以图1为例 , Elman 网络的非线性状态空间表达式为 :
y ( k ) = g ( w 3 x ( k ) ) (1) y(k) = g(w^3x(k)) \tag{1} y(k)=g(w3x(k))(1)

x ( k ) = f ( w 1 x c ( k ) + w 2 ( u ( k − 1 ) ) ) (2) x(k)=f(w^1x_c(k)+w^2(u(k-1)))\tag{2} x(k)=f(w1xc(k)+w2(u(k1)))(2)

x c ( k ) = x ( k − 1 ) (3) x_c(k)=x(k-1)\tag{3} xc(k)=x(k1)(3)

式中, y y y m m m 维输出结点向量 ; x x x n n n 维中间层结点单元向量; u u u r r r 维输入向量; x c x_c xc n n n 维反馈状态向量; w 3 w^3 w3 为中间层到输出层连接权值; w 2 w^2 w2为输入层到中间层连接权值; w 1 w^1 w1为承接层到中间层的连接权值; g ( ∗ ) g(*) g()为输出神经元的传递函数,是中间层输出的线性组合; f ( ∗ ) f(*) f()为中间层神经元的传递函数,常采用 S S S 函数 。

Elman 神经网络也采用 BP 算法进行权值修正,学习指标函数采用误差平方和函数。
E ( w ) = ∑ k = 1 n ( y k ( w ) − y k ′ ( w ) ) 2 (4) E(w)=\sum_{k=1}^n(y_k(w)-y'_k(w))^2\tag{4} E(w)=k=1n(yk(w)yk(w))2(4)

3.电力负荷预测概述

电力系统由电力网、电力用户共同组成,其任务是给广大用户不间断地提供经济、可靠、符 质量标准的电能,满足各类负荷的需求,为社会发展提供动力。由于电力的生产与使用具有特殊性,即电能难以大量储存,而且各类用户对电力的需求是时刻变化的,这就要求系统发电出力应随时与系统负荷的变化动态平衡,即系统要最大限度地发挥出设备能力,使整个系统保 持稳定且高效地运行,以满足用户的需求 。 否则,就会影响供用电的质量,甚至危及系统的安全 与稳定 。 因此,电力系统负荷预测技术发展了起来,并且是这一切得以顺利进行的前提和基础。负荷预测的核心问题是预测的技术问题,或者说是预测的数学模型。传统的数学模型是用现成的数学表达式加以描述,具有计算量小、速度快的优点,但同时也存在很多的缺陷和局限性,比如不具备自学习、自适应能力、预测系统的鲁棒性没有保障等。特别是随着我国经济 的发展,电力系统的结胸日趋复杂,电力负荷变化的非线性、时变性和不确定性的特点更加明 显,很难建立一个合适的数学模型来清晰地表达负荷 和影响负荷的变量之间的 关系。而基于神经网络的非数学模型预测法,为解决数学模型法的不足提供了新的思路 。

3.1 模型建立

利用人工神经网络对电力系统负荷进行预测,实际上是利用人工神经网络可以以任意精度逼近任一非线性函数的特性及通过学习历史数据建模的优点。而在各种人工神经网络中, 反馈式神经网络又因为其具有输入延迟,进而适合应用于电力系统负荷预测。根据负荷的历史数据,选定反馈神经网络的输入、输出节点,来反映电力系统负荷运行的内在规律,从而达到预测未来时段负荷的目的。因此,用人工神经网络对电力系统负荷进行预测 ,首要的问题是确定神经网络的输入、输出节点,使其能反映电力负荷的运行规律。

一般来说,电力系统的负荷高峰通常出现在每天的 9~ 19 时之间 ,本案对每天上午的逐时负荷进行预测 ,即预测每天 9 ~ 11 时共 3 小时的负荷数据。电力系统负荷数据如下表所列,表中数据为真实数据,已经经过归 一化 。

时间负荷数据负荷数据负荷数据
2008.10.100.12910.48420.7976
2008.10.110.10840.45790.8187
2008.10.120.18280.79770.743
2008.10.130.1220.54680.8048
2008.10.140.1130.36360.814
2008.10.150.17190.60110.754
2008.10.160.12370.44250.8031
2008.10.170.17210.61520.7626
2008.10.180.14320.58450.7942

利用前 8 天的数据作为网络的训练样本,每 3 天的负荷作为输入向量,第 4 天的负荷作为目标向量。这样可以得到 5 组训练样本。第 9 天的数据作为网络的测试样本,验证网络能否合理地预测出当天的负荷数据 。

4.基于哈里斯鹰优化的Elman网络

哈里斯鹰算法原理请参考:https://blog.csdn.net/u011835903/article/details/108528147

利用哈里斯鹰算法对Elman网络的初始权值和阈值进行优化。适应度函数设计为测试集的绝对误差和:
f i t n e s s = ∑ i = 1 n ∣ p r e d i c t n − T r u e V a l u e n ∣ (5) fitness = \sum_{i=1}^n|predict_n - TrueValue_n| \tag{5} fitness=i=1npredictnTrueValuen(5)

5.测试结果

哈里斯鹰参数设置如下:

%% 网络相关参数设定
hiddNum = 18;%隐含层个数
R = size(p_train,1);%输入数据每组的维度
Q = size(t_train,1);%输出数据的维度
threshold = [0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1];%每组数据对应维度的最小(0)和最大值(1);

%% 哈里斯鹰相关参数设定
%% 定义哈里斯鹰优化参数
pop=20; %种群数量
Max_iteration=20; %  设定最大迭代次数
dim = hiddNum*R + hiddNum + Q + hiddNum*hiddNum + Q*hiddNum;%维度,即权值与阈值的个数,承接层个数
lb = -5.*ones(1,dim);%下边界
ub = 5.*ones(1,dim);%上边界
fobj = @(x) fun(x,hiddNum,R,Q,threshold,p_train,t_train,p_test,t_test);

在这里插入图片描述
在这里插入图片描述

从结果来看,3个时刻点,哈里斯鹰-Elman均比原始结果Elman好,误差更小。

由于上述数据有限,大家可以用自己的数据进行测试。

6.参考文献

书籍《MATLAB神经网络43个案例分析》

7.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/295111.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

凝聚层次聚类及DBscan算法详解与Python实例

凝聚层次聚类及DBscan算法详解与Python实例 凝聚层次聚类DBscan算法实例演示 在本篇博客中,我们将深入探讨凝聚层次聚类(Agglomerative Hierarchical Clustering)和DBscan算法,并通过Python实例演示它们的应用。这两种算法都属于聚…

12 位多通道,支持 MPU 存储保护功能,应用于工业控制,智能家居等产品中的国产芯片ACM32F403/F433

ACM32F403/F433 芯片的内核基于 ARMv8-M 架构,支持 Cortex-M33 和 Cortex-M4F 指令集。芯片内核 支持一整套DSP指令用于数字信号处理,支持单精度FPU处理浮点数据,同时还支持Memory Protection Unit (MPU)用于提升应用的…

Vue中break关键字

Change() {//每次触发该事件,都要讲data重新赋值一次this.data JSON.parse(JSON.stringify(this.data1));// 根据选中的等级更新数据switch (this.selectedlevel) {case 1:// 更新数据为一级数据this.data this.data.filter(item > item.level "1"…

VINS-MONO拓展2----更快地makeHessian矩阵

1. 目标 完成大作业T2 作业提示: 多线程方法主要包括以下几种(参考博客): MPI(多主机多线程开发),OpenMP(为单主机多线程开发而设计)SSE(主要增强CPU浮点运算的能力)CUDAStream processing, 之前已经了解过std::thread和pthread,拓展1…

Unity 打包AB 场景烘培信息丢失

场景打包成 AB 资源的时候,Unity 不会打包一些自带相关的资源 解决办法:在 Project settings > Graphics下设置(Automatic 修改成 Custom)

WPF 入门教程DispatcherTimer计时器

https://www.zhihu.com/tardis/bd/art/430630047?source_id1001 在 WinForms 中,有一个名为 Timer 的控件,它可以在给定的时间间隔内重复执行一个操作。WPF 也有这种可能性,但我们有DispatcherTimer控件,而不是不可见的控件。它几…

【响应式编程-03】Lambda表达式底层实现原理

一、简要描述 Lambda的底层实现原理Lambda表达式编译和运行过程 二、Lambda的底层实现原理 Lambda表达式的本质 函数式接口的匿名子类的匿名对象 反编译:cfr-0.145.jar 反编译:LambdaMetafactory.metafactory() 跟踪调试,转储Lambda类&#x…

产品分析 | 数据资产目录竞品分析

一、分析背景和目的 分析市场上主流的包含数据资产目录的产品,重新整理一篇竞品分析以供参考和学习。 二、版本信息 三、名词解释 四、需求背景 1. 产品现状 建设了数据资产目录,但是偏技术向,比较难用,细节流程上欠考虑。元数…

Typescript 中的namespace

命名空间: 类似 vuex 的 namespace 相当于一个容器。 namespace 是一种将相关代码组织在一起的方式,中文译为“命名空间”。 它出现在 ES 模块诞生之前,作为 TypeScript 自己的模块格式而发明的。但是,自从有了 ES 模块&#x…

护眼台灯哪个牌子好?2024年专业护眼台灯品牌排行榜!

近些年来,护眼台灯作为视力健康照明工具愈发受到欢迎,越来越多的人使用护眼台灯取代传统白炽灯,做护眼台灯的产品也是层出不穷。 不过,也有很多人对护眼台灯的效果保持怀疑的台灯,一是对护眼效果的疑问,二…

Springcloud alibab和dubbo有什么区别?

Spring Cloud Alibaba 和 Dubbo 都是为了简化企业级应用开发而生的框架,尤其是在分布式系统和微服务架构的背景下。 虽然他们在某些功能上有重叠,但各有侧重点和使用场景。 微服务架构图 首先介绍一下 Spring Cloud Alibaba: Spring Cloud …

Java 开发环境搭建

什么是 JDK 和 JRE? JDK (Java Development Kit):是 Java 程序开发工具包,包含 JRE 和开发人员使用的工具JRE(Java Runtime Environment):是 Java 程序的运行时环境,包含…

LLM 中的长文本问题

近期,随着大模型技术的发展,长文本问题逐渐成为热门且关键的问题,不妨简单梳理一下近期出现的典型的长文本模型: 10 月上旬,Moonshot AI 的 Kimi Chat 问世,这是首个支持 20 万汉字输入的智能助手产品; 10 月下旬,百川智能发布 Baichuan2-192K 长窗口大模型,相当于一次…

软件测试——自动化测试框架有哪些?

📢专注于分享软件测试干货内容,欢迎点赞 👍 收藏 ⭐留言 📝 如有错误敬请指正!📢软件测试面试题分享: 1000道软件测试面试题及答案📢软件测试实战项目分享: 纯接口项目-完…

electron——查看electron的版本(代码片段)

electron——查看electron的版本(代码片段)1.使用命令行: npm ls electron 操作如下: 2.在软件内使用代码,如下: console.log(process) console.log(process.versions.electron) process 里包含很多信息: process详…

正定矩阵的四个重要性质(附例子)

目录 一. 写在前面 二. 正定矩阵的基本定义 三. 从正定矩阵 到 特征值 四. 从特征值 到 正定矩阵 五. 从正定矩阵 到 行列式 六. 从正定矩阵 到 矩阵的主元 七. 从矩阵的主元 到 正定矩阵 八. 简单的讨论 8.1 行列式检验 8.2 特征值检验 总结 一. 写在前面 在格密码…

iview 选择框远程搜索 指定筛选的参数

问题:开启了filterable之后,选择框是允许键盘输入的,但是会对选择列表进行过滤,如果不想使用再次过滤,可以试下下面这个方法。 场景:输入加密前的关键字筛选,选择框显示加密后的数据 说明一&a…

sun.misc.BASE64Encoder() 找不到jar包

import sun.misc.BASE64Decoder;新下载的项目,在配置好maven之后,也更新完了Maven文件,还是发现有部分jar没有导入,报红信息如上所示。 其实这个是 Sun 的专用 API , rt.jar 是jre 中自带的 jar 包,所以就可…

2024中国管业十大品牌——皮尔特管业

2024中国管业十大品牌——皮尔特管业 2024年度中国管业十大品牌评选活动圆满举办。来自江苏的皮尔特管道,再次成功入围2024中国管业十大品牌。皮尔特管业凭借多年积累的市场口碑,再次入围也是实至名归。 苏州皮尔特管业科技有限公司创建于2001年&#x…

基于群居蜘蛛算法优化的Elman神经网络数据预测 - 附代码

基于群居蜘蛛算法优化的Elman神经网络数据预测 - 附代码 文章目录 基于群居蜘蛛算法优化的Elman神经网络数据预测 - 附代码1.Elman 神经网络结构2.Elman 神经用络学习过程3.电力负荷预测概述3.1 模型建立 4.基于群居蜘蛛优化的Elman网络5.测试结果6.参考文献7.Matlab代码 摘要&…