基于群居蜘蛛算法优化的Elman神经网络数据预测 - 附代码

基于群居蜘蛛算法优化的Elman神经网络数据预测 - 附代码

文章目录

  • 基于群居蜘蛛算法优化的Elman神经网络数据预测 - 附代码
    • 1.Elman 神经网络结构
    • 2.Elman 神经用络学习过程
    • 3.电力负荷预测概述
      • 3.1 模型建立
    • 4.基于群居蜘蛛优化的Elman网络
    • 5.测试结果
    • 6.参考文献
    • 7.Matlab代码

摘要:针对Elman神经网络,初始权值阈值盲目随机性的缺点。采用群居蜘蛛算法对ELman的阈值和权值进行优化。利用电力负荷预测模型进行测试,结果表明改进后的神经网络预测性能更佳。

1.Elman 神经网络结构

Elman 型神经网络一般分为四层:输入层、隐含层(中间层)、承接层和输出层 。 如图 1所示。输入层、隐含层、输出层的连接类似于前馈式网络 ,输入层的单元仅起信号传输作用,输出层单元起线性加权作用。隐含层单元的传递函数可采用线性或非线性函数,承接层又称上 下文层或状态层,它用来记忆隐含层单元前一时刻的输出值并返回给网络的输入 , 可以认为是 一个一步延时算子。

Elman 神经网络的特点是隐含层的输出通过承接层的延迟与存储,自联到隐含层的输入。 这种自联方式使其对历史状态的数据具有敏感性,内部反馈网络的加入增强了网络本身处理动态信息的能力 ,从而达到动态建模的目的。此外, Elman 神经网络能够以任意精度逼近任意非线性映射,可以不考虑外部噪声对系统影响的具体形式,如果给出系统的输入输出数据对 , 就可以对系统进行建模 。

在这里插入图片描述

图1.Elman网络结构

2.Elman 神经用络学习过程

以图1为例 , Elman 网络的非线性状态空间表达式为 :
y ( k ) = g ( w 3 x ( k ) ) (1) y(k) = g(w^3x(k)) \tag{1} y(k)=g(w3x(k))(1)

x ( k ) = f ( w 1 x c ( k ) + w 2 ( u ( k − 1 ) ) ) (2) x(k)=f(w^1x_c(k)+w^2(u(k-1)))\tag{2} x(k)=f(w1xc(k)+w2(u(k1)))(2)

x c ( k ) = x ( k − 1 ) (3) x_c(k)=x(k-1)\tag{3} xc(k)=x(k1)(3)

式中, y y y m m m 维输出结点向量 ; x x x n n n 维中间层结点单元向量; u u u r r r 维输入向量; x c x_c xc n n n 维反馈状态向量; w 3 w^3 w3 为中间层到输出层连接权值; w 2 w^2 w2为输入层到中间层连接权值; w 1 w^1 w1为承接层到中间层的连接权值; g ( ∗ ) g(*) g()为输出神经元的传递函数,是中间层输出的线性组合; f ( ∗ ) f(*) f()为中间层神经元的传递函数,常采用 S S S 函数 。

Elman 神经网络也采用 BP 算法进行权值修正,学习指标函数采用误差平方和函数。
E ( w ) = ∑ k = 1 n ( y k ( w ) − y k ′ ( w ) ) 2 (4) E(w)=\sum_{k=1}^n(y_k(w)-y'_k(w))^2\tag{4} E(w)=k=1n(yk(w)yk(w))2(4)

3.电力负荷预测概述

电力系统由电力网、电力用户共同组成,其任务是给广大用户不间断地提供经济、可靠、符 质量标准的电能,满足各类负荷的需求,为社会发展提供动力。由于电力的生产与使用具有特殊性,即电能难以大量储存,而且各类用户对电力的需求是时刻变化的,这就要求系统发电出力应随时与系统负荷的变化动态平衡,即系统要最大限度地发挥出设备能力,使整个系统保 持稳定且高效地运行,以满足用户的需求 。 否则,就会影响供用电的质量,甚至危及系统的安全 与稳定 。 因此,电力系统负荷预测技术发展了起来,并且是这一切得以顺利进行的前提和基础。负荷预测的核心问题是预测的技术问题,或者说是预测的数学模型。传统的数学模型是用现成的数学表达式加以描述,具有计算量小、速度快的优点,但同时也存在很多的缺陷和局限性,比如不具备自学习、自适应能力、预测系统的鲁棒性没有保障等。特别是随着我国经济 的发展,电力系统的结胸日趋复杂,电力负荷变化的非线性、时变性和不确定性的特点更加明 显,很难建立一个合适的数学模型来清晰地表达负荷 和影响负荷的变量之间的 关系。而基于神经网络的非数学模型预测法,为解决数学模型法的不足提供了新的思路 。

3.1 模型建立

利用人工神经网络对电力系统负荷进行预测,实际上是利用人工神经网络可以以任意精度逼近任一非线性函数的特性及通过学习历史数据建模的优点。而在各种人工神经网络中, 反馈式神经网络又因为其具有输入延迟,进而适合应用于电力系统负荷预测。根据负荷的历史数据,选定反馈神经网络的输入、输出节点,来反映电力系统负荷运行的内在规律,从而达到预测未来时段负荷的目的。因此,用人工神经网络对电力系统负荷进行预测 ,首要的问题是确定神经网络的输入、输出节点,使其能反映电力负荷的运行规律。

一般来说,电力系统的负荷高峰通常出现在每天的 9~ 19 时之间 ,本案对每天上午的逐时负荷进行预测 ,即预测每天 9 ~ 11 时共 3 小时的负荷数据。电力系统负荷数据如下表所列,表中数据为真实数据,已经经过归 一化 。

时间负荷数据负荷数据负荷数据
2008.10.100.12910.48420.7976
2008.10.110.10840.45790.8187
2008.10.120.18280.79770.743
2008.10.130.1220.54680.8048
2008.10.140.1130.36360.814
2008.10.150.17190.60110.754
2008.10.160.12370.44250.8031
2008.10.170.17210.61520.7626
2008.10.180.14320.58450.7942

利用前 8 天的数据作为网络的训练样本,每 3 天的负荷作为输入向量,第 4 天的负荷作为目标向量。这样可以得到 5 组训练样本。第 9 天的数据作为网络的测试样本,验证网络能否合理地预测出当天的负荷数据 。

4.基于群居蜘蛛优化的Elman网络

群居蜘蛛算法原理请参考:https://blog.csdn.net/u011835903/article/details/108406547

利用群居蜘蛛算法对Elman网络的初始权值和阈值进行优化。适应度函数设计为测试集的绝对误差和:
f i t n e s s = ∑ i = 1 n ∣ p r e d i c t n − T r u e V a l u e n ∣ (5) fitness = \sum_{i=1}^n|predict_n - TrueValue_n| \tag{5} fitness=i=1npredictnTrueValuen(5)

5.测试结果

群居蜘蛛参数设置如下:

%% 网络相关参数设定
hiddNum = 18;%隐含层个数
R = size(p_train,1);%输入数据每组的维度
Q = size(t_train,1);%输出数据的维度
threshold = [0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1];%每组数据对应维度的最小(0)和最大值(1);

%% 群居蜘蛛相关参数设定
%% 定义群居蜘蛛优化参数
pop=20; %种群数量
Max_iteration=20; %  设定最大迭代次数
dim = hiddNum*R + hiddNum + Q + hiddNum*hiddNum + Q*hiddNum;%维度,即权值与阈值的个数,承接层个数
lb = -5.*ones(1,dim);%下边界
ub = 5.*ones(1,dim);%上边界
fobj = @(x) fun(x,hiddNum,R,Q,threshold,p_train,t_train,p_test,t_test);

在这里插入图片描述
在这里插入图片描述

从结果来看,3个时刻点,群居蜘蛛-Elman均比原始结果Elman好,误差更小。

由于上述数据有限,大家可以用自己的数据进行测试。

6.参考文献

书籍《MATLAB神经网络43个案例分析》

7.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/295080.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

面试被问了几百遍的 IOC 和 AOP ,一篇文章带你搞清楚!!!

面试被问了几百遍的 IOC 和 AOP ,一篇文章带你搞清楚!!! 这篇文章会从下面从以下几个问题展开对 IoC & AOP 的解释 什么是 IoC?IoC 解决了什么问题?IoC 和 DI 的区别?什么是 AOP&#xff…

实现文件拖拽上传的功能

1 先来看一下效果 2 我们来看一下代码执行的结果: 我们创建目标的容器盒子 和可以展示数据的ul 监听进入目前盒子的事件 3 文件进入目标容器中解析文件

NGUI基础-三大基础组件之Event System(Uicameras)

目录 主要作用 相关参数 (建议:红色是重点,黑色的了解即可) Event Type Events go to Process Events in Event Mask​编辑 Debug Command Click Allow Multi Touch Auto Hide Cursor Sticky ToolTip/Long press ToolTip/ToolTip…

八、Lua脚本详解—— 超详细操作演示!

八、Lua脚本详解 —— 超详细操作演示! 八、Lua脚本详解8.1 Lua 简介8.2 Linux 系统的Lua8.2.1 Lua 下载8.2.2 Lua 安装8.2.3 Hello World 8.3 Win 系统的Lua8.4 Lua 脚本基础8.4.1 注释8.4.2 数据类型8.4.3 标识符8.4.4 运算符8.4.5 函数8.4.6 流程控制语句8.4.7 循…

【C语言深度解剖——第二节(关键字2)】《C语言深度解剖》+蛋哥分析+个人理解

今日的星辰辉映太古的源起,过往的故事指引明日的生死!(王者荣耀李信) 本文由睡觉待开机原创,未经允许不得转载。 本内容在csdn网站首发 欢迎各位点赞—评论—收藏 如果存在不足之处请评论留言,共同进步&…

万界星空科技MES系统中的生产管理

MES系统能够帮助企业实现生产计划管理、生产过程控制、产品质量管理、车间库存管理、项目看板管理等,提高企业制造执行能力。 万界星空MES系统特点: 1. 采用强大数据采集引擎、整合数据采集渠道(RFID、条码设备、PLC、Sensor、IPC、PC等&…

Ribbon客户端负载均衡

简介 Spring Cloud Ribbon是基于Netflix Ribbon实现的一套客户端负载均衡的工具。 简单的说,Ribbon是Netflix发布的开源项目,主要功能是提供客户端的软件负载均衡算法和服务调用。Ribbon客户端组件提供一系列完善的配置项如连接超时,重试等…

已知输入图像大小为n、卷积核大小为f、卷积步长s,填充大小为p,求解输出图像大小。

问题描述:已知输入图像大小为n、卷积核大小为f、卷积步长s,填充大小为p,求解输出图像大小。 问题解答: 输出图像的大小可以使用以下的计算公式确定: 为了举例说明,假设有以下参数: 输入图像大…

深入理解Java中资源加载的方法及Spring的ResourceLoader应用

在Java开发中,资源加载是一个基础而重要的操作。本文将深入探讨Java中两种常见的资源加载方式:ClassLoader的getResource方法和Class的getResource方法,并介绍Spring框架中的ResourceLoader的应用。 1. 资源加载的两种方式 1.1 ClassLoader…

低代码开发平台支持复杂的业务逻辑和API对接吗

当今数字化时代,企业和组织面临着日益复杂的业务需求。为了应对这些挑战,低代码开发平台应运而生。白码低代码开发平台是一种高效、灵活且可扩展的开发工具,能够支持复杂的业务逻辑和第三方API对接,为企业带来更快速、更灵活的解决…

【Linux Shell】6. echo 命令

文章目录 【 1. 显示普通字符串 】【 2. 显示转义字符 】【 3. 显示变量 】【 4. 显示换行 】【 5. 显示不换行 】【 6. 显示命令执行结果 】 Shell 的 echo 指令用于字符串的输出。命令格式: echo string【 1. 显示普通字符串 】 #!/bin/bashecho "It is a …

OpenAI 拟每年投入 100-500 万美元,以获取新闻使用许可

最近两位媒体公司高层透露,OpenAI正积极与新闻出版公司进行谈判,提出每年投入100万至500万美元的费用,以获取将新闻文章用于训练大型语言模型的授权。 OpenAI目前正与大约十几家媒体公司进行谈判,但有报道称,即使对于…

【大数据】Zookeeper 集群及其选举机制

Zookeeper 集群及其选举机制 1.安装 Zookeeper 集群2.如何选取 Leader 1.安装 Zookeeper 集群 我们之前说了,Zookeeper 集群是由一个领导者(Leader)和多个追随者(Follower)组成,但这个领导者是怎么选出来的…

【公有云】通过AWS Endpoint service Endpoint 实现跨VPC请求收敛

背景 公司两个AWS VPC有互通的需求,分别是PROD-VPC和PCI-VPC。PCI是Payment Card Industry的简称,通常PCI-VPC部署支付后端服务。关于PCI的相关资料参考AWS PCI DSS,Payment Card Industry 数据安全标准。 PROD服务请求PCI服务是跨VPC访问&…

Spring官方移除Java8

大家好我是苏麟 , 今天聊聊怎么继续使用Java8做项目 . 在做项目的时候突然发现Java8没了 , 我心想 : " 嗯? IDEA出毛病了?" ,经过我仔细检查原来是spring官方不支持Java8了 . IDEA 内置的 Spring Initializr 创建 Spring Boot 新项目时,没有 Java 8 的选…

2024年如何借用电商新零售破局?新型商业模式——乐享甄选竞拍模式

2024年如何借用电商新零售破局?新型商业模式——乐享甄选竞拍模式 背景:经历疫情三年的黑天鹅,消费者对未来收入预期和不自信等悲观情绪,从而使得“勒紧腰带,少消费,不消费”,以简单实用成为了新…

静态网页设计——贵州美食(HTML+CSS+JavaScript)

前言 声明:该文章只是做技术分享,若侵权请联系我删除。!! 感谢大佬的视频: https://www.bilibili.com/video/BV1vC4y1K7de/?vd_source5f425e0074a7f92921f53ab87712357b 使用技术:HTMLCSSJS(…

企业选择通配符证书和多域名证书

随着互联网的发展,用户渐渐不再满足于只创建一个网站,因此,网站越来越多,管理多个网站的SSL证书的成本和时间也随之增加。为了节省管理多个站点的SSL证书的时间与成本,很多用户会选择通配符SSL证书与多域名SSL证书。这…

基于萤火虫算法优化的Elman神经网络数据预测 - 附代码

基于萤火虫算法优化的Elman神经网络数据预测 - 附代码 文章目录 基于萤火虫算法优化的Elman神经网络数据预测 - 附代码1.Elman 神经网络结构2.Elman 神经用络学习过程3.电力负荷预测概述3.1 模型建立 4.基于萤火虫优化的Elman网络5.测试结果6.参考文献7.Matlab代码 摘要&#x…

docker daemon.json配置bip项需要注意的地方

docker是现在部署服务比较常用的一种方式,但是docker0网络默认为172.17.x.x网段,172.17这个网段是私有化ip段,而且在企业内部使用比较常见的一个网段,docker0创建后会创建一个172.17网段的路由(可以通过ip route查看&a…