Pytorch从零开始实战15

Pytorch从零开始实战——ResNeXt-50算法实战

本系列来源于365天深度学习训练营

原作者K同学

文章目录

  • Pytorch从零开始实战——ResNeXt-50算法实战
    • 环境准备
    • 数据集
    • 模型选择
    • 开始训练
    • 可视化
    • 总结

环境准备

本文基于Jupyter notebook,使用Python3.8,Pytorch2.0.1+cu118,torchvision0.15.2,需读者自行配置好环境且有一些深度学习理论基础。本次实验的目的是了解并使用ResNeXt-50模型。
第一步,导入常用包

import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import torchvision
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torch.nn.functional as F
import random
from time import time
import numpy as np
import pandas as pd
import datetime
import gc
import os
import copy
import warnings
os.environ['KMP_DUPLICATE_LIB_OK']='True'  # 用于避免jupyter环境突然关闭
torch.backends.cudnn.benchmark=True  # 用于加速GPU运算的代码

设置随机数种子

torch.manual_seed(428)
torch.cuda.manual_seed(428)
torch.cuda.manual_seed_all(428)
random.seed(428)
np.random.seed(428)

检查设备对象

torch.manual_seed(428)
torch.cuda.manual_seed(428)
torch.cuda.manual_seed_all(428)
random.seed(428)
np.random.seed(428)

检查设备对象

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device, torch.cuda.device_count() # # (device(type='cuda'), 2)

数据集

本次实验继续使用猴痘病数据集,使用pathlib查看类别,本次类别只有0,1两种类别分别代表患病和不患病。

import pathlib
data_dir = './data/ill/'
data_dir = pathlib.Path(data_dir) # 转成pathlib.Path对象
data_paths = list(data_dir.glob('*')) 
classNames = [str(path).split("/")[2] for path in data_paths]
classNames # ['Monkeypox', 'Others']

使用transforms对数据集进行统一处理,并且根据文件夹名映射对应标签

all_transforms = transforms.Compose([
    transforms.Resize([224, 224]),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # 标准化
])

total_data = datasets.ImageFolder("./data/ill/", transform=all_transforms)
total_data.class_to_idx # {'Monkeypox': 0, 'Others': 1}

随机查看5张图片

def plotsample(data):
    fig, axs = plt.subplots(1, 5, figsize=(10, 10)) #建立子图
    for i in range(5):
        num = random.randint(0, len(data) - 1) #首先选取随机数,随机选取五次
        #抽取数据中对应的图像对象,make_grid函数可将任意格式的图像的通道数升为3,而不改变图像原始的数据
        #而展示图像用的imshow函数最常见的输入格式也是3通道
        npimg = torchvision.utils.make_grid(data[num][0]).numpy()
        nplabel = data[num][1] #提取标签 
        #将图像由(3, weight, height)转化为(weight, height, 3),并放入imshow函数中读取
        axs[i].imshow(np.transpose(npimg, (1, 2, 0))) 
        axs[i].set_title(nplabel) #给每个子图加上标签
        axs[i].axis("off") #消除每个子图的坐标轴

plotsample(total_data)

在这里插入图片描述
根据8比2划分数据集和测试集,并且利用DataLoader划分批次和随机打乱

train_size = int(0.8 * len(total_data))
test_size  = len(total_data) - train_size
train_ds, test_ds = torch.utils.data.random_split(total_data, [train_size, test_size])

batch_size = 32
train_dl = torch.utils.data.DataLoader(train_ds,
                                        batch_size=batch_size,
                                        shuffle=True,
                                      )
test_dl = torch.utils.data.DataLoader(test_ds,
                                        batch_size=batch_size,
                                        shuffle=True,
                                     )

len(train_dl.dataset), len(test_dl.dataset) # (1713, 429)

模型选择

ResNeXt是由何凯明团队在2017年CVPR会议上提出来的新型图像分类网络。ResNeXt是ResNet的升级版,在ResNet的基础上,引入了cardinality的概念。该概念用于控制模型的宽度,以提高模型的表达能力。主要的创新点是在基本的残差块结构中引入了多个相互独立的分支,这些分支的数量由 cardinality 参数控制。每个分支都有自己的权重,允许网络以更多的角度观察输入数据,从而提高特征提取的多样性。本质其实是分组卷积处理。
在这里插入图片描述
BasicBlock 是 ResNet 中的基本块,用于构建浅层次的网络。它包含两个卷积层,每个卷积层后面都有 Batch Normalization 和 ReLU 激活函数。在残差连接中,如果输入和输出的通道数或空间大小不一致,会使用 downsample 函数进行下采样,以保持一致性。expansion 变量表示块内部的维度倍增系数,用于调整残差块中卷积核的通道数。

class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, in_channel, out_channel, stride=1, downsample=None, **kwargs):
        super(BasicBlock, self).__init__()
        self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=out_channel,
                               kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(out_channel)
        self.relu = nn.ReLU()
        self.conv2 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel,
                               kernel_size=3, stride=1, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(out_channel)
        self.downsample = downsample

    def forward(self, x):
        identity = x
        if self.downsample is not None:
            identity = self.downsample(x)

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        out += identity
        out = self.relu(out)

        return out

Bottleneck 类是 ResNet 中的瓶颈块,用于构建深层次的网络。它包含三个卷积层,分别用于降维、3x3 卷积以及升维。与 BasicBlock 不同,Bottleneck 使用 1x1 卷积降维和升维,以减小计算复杂度。expansion 变量表示块内部的维度倍增系数,用于调整残差块中卷积核的通道数。

class Bottleneck(nn.Module):
    expansion = 4

    def __init__(self, in_channel, out_channel, stride=1, downsample=None,
                 groups=1, width_per_group=64):
        super(Bottleneck, self).__init__()

        width = int(out_channel * (width_per_group / 64.)) * groups

        self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=width,
                               kernel_size=1, stride=1, bias=False)  
        self.bn1 = nn.BatchNorm2d(width)
        self.conv2 = nn.Conv2d(in_channels=width, out_channels=width, groups=groups,
                               kernel_size=3, stride=stride, bias=False, padding=1)
        self.bn2 = nn.BatchNorm2d(width)
        self.conv3 = nn.Conv2d(in_channels=width, out_channels=out_channel*self.expansion,
                               kernel_size=1, stride=1, bias=False)  
        self.bn3 = nn.BatchNorm2d(out_channel*self.expansion)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample

    def forward(self, x):
        identity = x
        if self.downsample is not None:
            identity = self.downsample(x)

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        out += identity
        out = self.relu(out)

        return out

ResNet 类是整个模型的主体,由多个 block 组成。初始化时,它包括卷积层、Batch Normalization、ReLU 激活函数以及四个layer。_make_layer 方法用于构建每个阶段中的多个块,根据每个残差块的数量 block_num 和指定的残差块类型 block,它会堆叠多个相同类型的残差块,最终将这些块串联在一起。

class ResNet(nn.Module):

    def __init__(self,
                 block,
                 blocks_num,
                 num_classes=1000,
                 include_top=True,
                 groups=1,
                 width_per_group=64):
        super(ResNet, self).__init__()
        self.include_top = include_top
        self.in_channel = 64

        self.groups = groups
        self.width_per_group = width_per_group

        self.conv1 = nn.Conv2d(3, self.in_channel, kernel_size=7, stride=2,
                               padding=3, bias=False)
        self.bn1 = nn.BatchNorm2d(self.in_channel)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, blocks_num[0])
        self.layer2 = self._make_layer(block, 128, blocks_num[1], stride=2)
        self.layer3 = self._make_layer(block, 256, blocks_num[2], stride=2)
        self.layer4 = self._make_layer(block, 512, blocks_num[3], stride=2)
        if self.include_top:
            self.avgpool = nn.AdaptiveAvgPool2d((1, 1))  # output size = (1, 1)
            self.fc = nn.Linear(512 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')

    def _make_layer(self, block, channel, block_num, stride=1):
        downsample = None
        if stride != 1 or self.in_channel != channel * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.in_channel, channel * block.expansion, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(channel * block.expansion))

        layers = []
        layers.append(block(self.in_channel,
                            channel,
                            downsample=downsample,
                            stride=stride,
                            groups=self.groups,
                            width_per_group=self.width_per_group))
        self.in_channel = channel * block.expansion

        for _ in range(1, block_num):
            layers.append(block(self.in_channel,
                                channel,
                                groups=self.groups,
                                width_per_group=self.width_per_group))

        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        if self.include_top:
            x = self.avgpool(x)
            x = torch.flatten(x, 1)
            x = self.fc(x)

        return x

定义resnext50_32x4d,“32x4d” 的意义是每个残差块内有 32 个分支,每个分支内有 4 个通道。

def resnext50_32x4d(num_classes=2, include_top=True):
    groups = 32
    width_per_group = 4
    return ResNet(Bottleneck, [3, 4, 6, 3],
                  num_classes=num_classes,
                  include_top=include_top,
                  groups=groups,
                  width_per_group=width_per_group)

使用summary查看模型。

from torchsummary import summary
model = resnext50_32x4d().to(device)
summary(model, input_size=(3, 224, 224))

在这里插入图片描述

开始训练

定义训练函数

def train(dataloader, model, loss_fn, opt):
    size = len(dataloader.dataset)
    num_batches = len(dataloader)
    train_acc, train_loss = 0, 0

    for X, y in dataloader:
        X, y = X.to(device), y.to(device)
        pred = model(X)
        loss = loss_fn(pred, y)

        opt.zero_grad()
        loss.backward()
        opt.step()

        train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()

    train_acc /= size
    train_loss /= num_batches
    return train_acc, train_loss

定义测试函数

def test(dataloader, model, loss_fn):
    size = len(dataloader.dataset)
    num_batches = len(dataloader)
    test_acc, test_loss = 0, 0
    with torch.no_grad():
        for X, y in dataloader:
            X, y = X.to(device), y.to(device)
            pred = model(X)
            loss = loss_fn(pred, y)
    
            test_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
            test_loss += loss.item()

    test_acc /= size
    test_loss /= num_batches
    return test_acc, test_loss

定义学习率、损失函数、优化算法

loss_fn = nn.CrossEntropyLoss()
learn_rate = 0.0001
opt = torch.optim.Adam(model.parameters(), lr=learn_rate)

开始训练,epoch设置为30

import time
epochs = 30
train_loss = []
train_acc = []
test_loss = []
test_acc = []

T1 = time.time()

best_acc = 0
best_model = 0

for epoch in range(epochs):

    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
    
    model.eval() # 确保模型不会进行训练操作
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)

    if epoch_test_acc > best_acc:
        best_acc = epoch_test_acc
        best_model = copy.deepcopy(model)
        
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    print("epoch:%d, train_acc:%.1f%%, train_loss:%.3f, test_acc:%.1f%%, test_loss:%.3f"
          % (epoch + 1, epoch_train_acc * 100, epoch_train_loss, epoch_test_acc * 100, epoch_test_loss))

T2 = time.time()
print('程序运行时间:%s秒' % (T2 - T1))

PATH = './best_model.pth'  # 保存的参数文件名
if best_model is not None:
    torch.save(best_model.state_dict(), PATH)
    print('保存最佳模型')
print("Done")

在这里插入图片描述

可视化

可视化训练过程与测试过程

import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述

总结

ResNeXt 使用多个分支(cardinality)来学习特征,每个分支都是一个小型的卷积网络。分支的输出在通道维度上进行拼接,增加了模型的宽度,提高了特征的丰富性。通过增加模型的宽度而不是深度,ResNeXt 在一定程度上提高了模型性能,同时减少了参数量和计算复杂度。通过学习它的设计理念可能会启发我们后续工作。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/293473.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【计算机毕业设计】SSM医药信息管理系统

项目介绍 该系统共七个功能模块:查询模块、录入模块、删除模块、修改模块、浏览模块、打印模块和用户管理模块。 系统只有一个超级管理员,可以创建系统用户并进行权限管理,其他用户没有用户管理权限,只有其他权限。 不同的用户…

Jvm垃圾收集器系列之Parallel Scavenge收集器(个人见解仅供参考)

问:什么是Parallel Scavenge? 答:Parallel Scavenge是Java HotSpot虚拟机中的一种垃圾收集器,它主要用于提高应用程序的吞吐量。 问:Parallel Scavenge的主要目标是什么? 答:Parallel Scavenge的…

Debian12使用Xshell连接失败解决办法详细

1、Debian开启ssh服务 sudo apt update -y sudo apt install ssh2、编辑配置文件 # 安装vim sudo apt install vimvim /etc/ssh/sshd_config3、将#PermitRootLogin prohibit-password的注释去掉,设置为yes 4、将#PasswordAuthentication no的注释去掉,…

什么是DigiCert证书?

DigiCert作为全球知名的证书颁发机构,以其卓越的品质和全面的服务,为用户的数据安全保驾护航。 一、为何选择DigiCert证书? 权威认证:DigiCert与全球众多知名企业和政府机构合作,拥有广泛的认可度。高安全性&#xff…

太阳能杀虫灯的优点是什么

太阳能杀虫灯的优点主要包括以下几点: 环保节能:太阳能杀虫灯利用太阳能进行供电,无需接通市电,既节约能源又避免了排放污染物。适用范围广:只要有阳光照射的地区都可以使用太阳能杀虫灯,特别适合在电力资…

62.状态机实践(活动管理系统:二)

文章目录 一、简介二、状态机实践(活动元信息管理)1、dal/db.go2、dal/activity.go3、constdef/activity.go4、service/activity.go5、routes/routes.go6、main.go 代码地址:https://gitee.com/lymgoforIT/golang-trick/tree/master/37-load-…

详细解读QLC SSD无效编程问题-4

对于这些全部页面被无效化的WL,执行第二次编程实际上是不必要的,但当前的策略并未注意到这一问题。而对于那些既有有效页面又有无效页面(图11中显示为1到3个)的WL,应当被编程,但可以利用这些无效信息来改进…

C++设计模式 #8 抽象工厂(Abstract Factory)

抽象工厂这个名字比较难以帮助理解,可以把抽象工厂理解为“品牌工厂”或者“家族工厂”。 动机 在软件系统中,经常面临着“一系列相互依赖的对象”的创建工作;同时,由于需求的变化,往往存在更多系列对象的创建工作。如…

【Python可视化实战】钻石数据可视化

一、项目引言 1.背景和目标 钻石作为一种珍贵的宝石,其价格受到多种因素的影响。为了深入了解钻石价格的决定因素,我们收集了大量关于钻石的数据,并希望通过数据可视化来揭示钻石特征与价格之间的关系。 2.内容 收集钻石的各项特征数据&a…

【python高级用法】进程

一个简单的进程 # -*- coding: utf-8 -*-import multiprocessingdef foo(i):print (called function in process: %s %i)returnif __name__ __main__:Process_jobs []for i in range(5):p multiprocessing.Process(targetfoo, args(i,))Process_jobs.append(p)p.start()p.j…

Vue中的过滤器详解(应用场景和原理分析)

文章目录 一、是什么二、如何用定义filter小结: 三、应用场景四、原理分析小结: 参考文献 一、是什么 过滤器(filter)是输送介质管道上不可缺少的一种装置 大白话,就是把一些不必要的东西过滤掉 过滤器实质不改变原…

K-最近邻算法(KNN)是什么算法?

K-最近邻算法(K-Nearest Neighbor,KNN)是一种经典的有监督学习方法,也可以被归为懒惰学习(Lazy Learning)方法。它基于“物以类聚”的原理,假设样本之间的类别距离越近则它们越有可能是同一类别…

关于目标检测任务中,XML(voc格式)标注文件的可视化

1. 前言 最近在弄关于目标检测的任务,因为检测的图片和标签是分开的,可视化效果不明显,也不知道随便下载的数据集,标注信息对不对。网上看了好多代码,代码风格和本人平时不同,看起来麻烦,也不知…

项目使用PowerJob

新一代的定时任务框架——PowerJob 简介 PowerJob是基于java开发的企业级的分布式任务调度平台,与xxl-job一样,基于web页面实现任务调度配置与记录,使用简单,上手快速,其主要功能特性如下: 使用简单&…

ClickHouse基础介绍

目录 前言 1、什么是clickhouse 2、OLAP场景的关键特征 3、列式存储更适合于OLAP场景的原因 4、clickhouse的独特功能 5、clickhouse的缺点 6、性能 6.1、单个大查询的吞吐量 6.2、处理短查询的延迟时间 6.3、处理大量短查询的吞吐量 6.4、数据的写入性能 前言 11月…

RTSP/Onvif安防平台EasyNVR接入EasyNVS显示服务不存在的原因及解决办法

EasyNVS云管理平台具备汇聚与管理EasyGBS、EasyNVR等平台的能力,可以将接入的视频资源实现统一的视频能力输出,支持远程可视化运维等管理功能,还能解决设备现场没有固定公网IP却需要在公网直播的需求。 有用户在现场部署EasyNVR,…

how2heap-2.23-04-unsorted_bin_leak

#include<stdio.h> #include<malloc.h>int main() {char* a malloc(0x88);char* b malloc(0x8);free(a);long* c malloc(0x88);printf("%lx , %lx\n",c[0],c[1]);return 0; }unsorted bin leak原理&#xff1a;将chunk从unsorted bin申请回来时&#…

ssm基于web的素材网的设计与实现+vue论文

基于web的素材网站的设计与实现 摘要 当下&#xff0c;正处于信息化的时代&#xff0c;许多行业顺应时代的变化&#xff0c;结合使用计算机技术向数字化、信息化建设迈进。传统的素材信息管理模式&#xff0c;采用人工登记的方式保存相关数据&#xff0c;这种以人力为主的管理…

安卓逆向某脚本-stringFog 拆解

引言 有个autojs 脚本软件,挺好用的,我想看下这个软件怎么实现的,学习写人家怎么写的。 先用MT 重新打包下, 看下重打包之后是否还可以继续使用。 用MT 打开APK,然后选择查看 随便找一个dex ,编辑下

02、Kafka ------ 配置 Kafka 集群

目录 配置 Kafka 集群配置步骤启动各Kafka节点 配置 Kafka 集群 启动命令&#xff1a; 1、启动 zookeeper 服务器端 小黑窗输入命令&#xff1a; zkServer 2、启动 zookeeper 的命令行客户端工具 &#xff08;这个只是用来看连接的节点信息&#xff0c;不启动也没关系&#…