K-最近邻算法(KNN)是什么算法?

K-最近邻算法(K-Nearest Neighbor,KNN)是一种经典的有监督学习方法,也可以被归为懒惰学习(Lazy Learning)方法。它基于“物以类聚”的原理,假设样本之间的类别距离越近则它们越有可能是同一类别。
KNN算法的工作原理简单且直观,当需要将一个测试样本分类时,它首先会计算测试样本与所有训练样本之间的距离,然后根据距离的递增关系进行排序。接着,它会选择距离最小的前K个样本,并统计这K个最近邻样本中每个样本出现的次数。最后,它会选择出现频率最高的类标号作为未知样本的类标号。
在KNN算法中,K值的选择是关键。如果K值较小,只有当需要进行预测的样本和训练的样本较接近时,才能有较好的效果。如果K值较大,则算法分类的近似误差增大,与输入样本距离较远的样本也会对结果产生作用。

在这里插入图片描述
KNN算法的工作过程如下:
1.计算待分类样本与训练集中所有样本之间的距离,常用的距离度量方法包括欧氏距离、曼哈顿距离等。
2.选择K个距离最近的样本,即K个最近邻。
3.对于分类问题,统计K个最近邻中不同类别的样本数量,并将待分类样本归为数量最多的那个类别。
4.对于回归问题,计算K个最近邻的平均值或加权平均值,并将其作为待分类样本的预测值。
KNN算法的优点是简单易理解、实现容易,并且对于非线性问题具有较好的表现。此外,KNN算法可以适应新的训练数据,不需要重新训练模型。KNN算法既能够用来解决分类问题,也能够用来解决回归问题。在处理分类问题时,KNN通过扫描训练样本集找到与测试样本最相似的训练样本,并依据该样本的类别进行投票确定测试样本的类别。在处理回归问题时,KNN则通过计算训练样本与测试样本的相似程度进行加权投票。
然而,KNN算法的缺点包括计算复杂度高,需要存储全部训练样本,对于大规模数据集会消耗较多的内存和时间。此外,KNN算法对于样本分布不平衡的情况可能产生偏见,并且对于高维数据和噪声数据的处理能力相对较弱。
需要注意的是,由于KNN算法需要计算所有训练样本与测试样本之间的距离,因此当训练样本集较大时,其计算成本会较高。为了解决这个问题,可以考虑使用一些优化的距离计算方法,如树结构算法等。同时,KNN算法的方差(Variance)往往较高,容易受到训练集大小和噪声的影响,因此在使用时需要注意过拟合和欠拟合的问题。
在应用方面,KNN算法常用于推荐系统、图像识别、医学诊断等领域。
喜欢点赞收藏,如有疑问,点击链接加入群聊【信创技术交流群】:http://qm.qq.com/cgi-bin/qm/qr?_wv=1027&k=EjDhISXNgJlMMemn85viUFgIqzkDY3OC&authKey=2SKLwlmvTpbqlaQtJ%2FtFXJgHVgltewcfvbIpzdA7BMjIjt2YM1h71qlJoIuWxp7K&noverify=0&group_code=721096495

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/293459.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

关于目标检测任务中,XML(voc格式)标注文件的可视化

1. 前言 最近在弄关于目标检测的任务,因为检测的图片和标签是分开的,可视化效果不明显,也不知道随便下载的数据集,标注信息对不对。网上看了好多代码,代码风格和本人平时不同,看起来麻烦,也不知…

项目使用PowerJob

新一代的定时任务框架——PowerJob 简介 PowerJob是基于java开发的企业级的分布式任务调度平台,与xxl-job一样,基于web页面实现任务调度配置与记录,使用简单,上手快速,其主要功能特性如下: 使用简单&…

ClickHouse基础介绍

目录 前言 1、什么是clickhouse 2、OLAP场景的关键特征 3、列式存储更适合于OLAP场景的原因 4、clickhouse的独特功能 5、clickhouse的缺点 6、性能 6.1、单个大查询的吞吐量 6.2、处理短查询的延迟时间 6.3、处理大量短查询的吞吐量 6.4、数据的写入性能 前言 11月…

RTSP/Onvif安防平台EasyNVR接入EasyNVS显示服务不存在的原因及解决办法

EasyNVS云管理平台具备汇聚与管理EasyGBS、EasyNVR等平台的能力,可以将接入的视频资源实现统一的视频能力输出,支持远程可视化运维等管理功能,还能解决设备现场没有固定公网IP却需要在公网直播的需求。 有用户在现场部署EasyNVR,…

how2heap-2.23-04-unsorted_bin_leak

#include<stdio.h> #include<malloc.h>int main() {char* a malloc(0x88);char* b malloc(0x8);free(a);long* c malloc(0x88);printf("%lx , %lx\n",c[0],c[1]);return 0; }unsorted bin leak原理&#xff1a;将chunk从unsorted bin申请回来时&#…

ssm基于web的素材网的设计与实现+vue论文

基于web的素材网站的设计与实现 摘要 当下&#xff0c;正处于信息化的时代&#xff0c;许多行业顺应时代的变化&#xff0c;结合使用计算机技术向数字化、信息化建设迈进。传统的素材信息管理模式&#xff0c;采用人工登记的方式保存相关数据&#xff0c;这种以人力为主的管理…

安卓逆向某脚本-stringFog 拆解

引言 有个autojs 脚本软件,挺好用的,我想看下这个软件怎么实现的,学习写人家怎么写的。 先用MT 重新打包下, 看下重打包之后是否还可以继续使用。 用MT 打开APK,然后选择查看 随便找一个dex ,编辑下

02、Kafka ------ 配置 Kafka 集群

目录 配置 Kafka 集群配置步骤启动各Kafka节点 配置 Kafka 集群 启动命令&#xff1a; 1、启动 zookeeper 服务器端 小黑窗输入命令&#xff1a; zkServer 2、启动 zookeeper 的命令行客户端工具 &#xff08;这个只是用来看连接的节点信息&#xff0c;不启动也没关系&#…

数据结构与算法(六)

文章目录 高频-体系学习班(六)41 四边形不等式技巧(上)41.1 非负数组切分成左右两部分累加和的最大值41.2 非负数组切分成左右两部分累加和的最大值的数组41.3 合并石子的得分41.4 画匠问题42 四边形不等式技巧(下)42.1 邮局选址问题42.2 丢棋子问题43 状态压缩的动态规划…

RabbitMQ安装与应用

文章目录 1. RabbitMQ1.1. 同步通讯与异步通讯1.2. 异步通讯的优缺点1.3. 几种MQ的对比1.4. docker安装运行RabbitMQ 流程1.5. RabbitMQ的几个概念1.6. 五种模型1.6.1. 基本消息队列 1.7. 基本使用1.7.1. 1建立连接时会出现以下界面![在这里插入图片描述](https://img-blog.csd…

MFC扩展库BCGControlBar Pro v34.0 - 网格、报表控件功能升级

BCGControlBar库拥有500多个经过全面设计、测试和充分记录的MFC扩展类。 我们的组件可以轻松地集成到您的应用程序中&#xff0c;并为您节省数百个开发和调试时间。 BCGControlBar专业版 v34.0已正式发布了&#xff0c;该版本包括新的主题任务对话框、图像效果、旋转圆形刻度、…

[电子榨菜]状态管理redux,以及react-redux

0.写在前面 很遗憾&#xff0c;最终还是没能入围2023年的博客评选。 不过不管怎么说&#xff0c;今年需要开个好头。 迫于成本压力吧&#xff0c;最终还是没能顺利离开这里。。。。。。 其实白天已经能放的下啦&#xff0c;我给自己买了喜欢的玩具&#xff0c;去了喜欢的漫…

MySQL:约束主键唯一键

表的约束&#xff1a;表中一定有约束&#xff0c;通过约束让插入表中的数据是符号预期的 约束的本质是通过技术手段&#xff0c;倒逼程序员插入正确的数据 Null约束 这里的Null表示在插入的时候&#xff0c;该属性能否为空&#xff0c;如果是NO&#xff0c;则插入时候必须有数…

《Effective C++》《Resource Management》

文章目录 13、term13:Use objects to manage resources14、term14:Think carefully about copying behavior in resource-managing classes15、term15:Provide access to raw resources in resource-managing classes法一&#xff1a; 使用智能指针的get进行显示转换法二&#…

第11课 实现桌面与摄像头叠加

在上一节&#xff0c;我们实现了桌面捕获功能&#xff0c;并成功把桌面图像和麦克风声音发送给对方。在实际应用中&#xff0c;有时候会需要把桌面与摄像头图像叠加在一起发送&#xff0c;这节课我们就来看下如何实现这一功能。 1.备份与修改 备份demo10并修改demo10为demo11…

Python数据分析从入门到进阶:分类算法

数据分析是处理和解释数据以发现有用信息和洞察的过程。其中&#xff0c;分类算法是数据分析领域的一个重要组成部分&#xff0c;它用于将数据分为不同的类别或组。 本文将介绍分类算法的基本概念和进阶技巧&#xff0c;以及如何在Python中应用这些算法&#xff0c;包括示例代…

01.微服务架构优缺点、服务拆分和远程调用

1.认识微服务 随着互联网行业的发展&#xff0c;对服务的要求也越来越高&#xff0c;服务架构也从单体架构逐渐演变为现在流行的微服务架构。这些架构之间有怎样的差别呢&#xff1f; 1.0.学习目标 了解微服务架构的优缺点 1.1.单体架构 单体架构&#xff1a;将业务的所有…

企业招聘信息查询API:招聘市场情报站,一键了解就业机会

前言 在当今这个信息爆炸的时代&#xff0c;快速、准确地获取企业招聘信息对于求职者来说至关重要。为了满足这一需求&#xff0c;企业招聘信息查询API应运而生&#xff0c;它为求职者提供了一个便捷、高效的平台&#xff0c;帮助用户快速了解企业的招聘动态。本文将详细介绍企…

众和策略:全国期货市场成交量同比增长25%

近来&#xff0c;我国期货业协会发布2023年12月全国期货商场生意状况数据。以单边核算&#xff0c;12月全国期货生意商场成交量为6.91亿手&#xff0c;成交额为480437.25亿元&#xff0c;同比分别添加4.48%和0.08%&#xff0c;环比分别下降12.58%和12.49%。2023年1-12月&#x…

AI写作生成器哪个好用一点,试试下面这五款

AI写作生成器在当今信息时代的快速发展中&#xff0c;成为了许多人的选择。然而&#xff0c;面对市场上众多的AI写作生成器&#xff0c;我们很难判断哪个更好用一点。为了解决这个问题&#xff0c;本文将介绍并使用下面这五款AI写作生成器&#xff0c;以帮助大家做出更明智的选…