代码随想录算法训练DAY18|二叉树5

算法训练DAY18|二叉树5

513.找树左下角的值

力扣题目链接

给定一个二叉树,在树的最后一行找到最左边的值。

示例 1:

513.找树左下角的值

示例 2:

513.找树左下角的值1

思路

本题要找出树的最后一行的最左边的值。此时大家应该想起用层序遍历是非常简单的了,反而用递归的话会比较难一点。

我们依然还是先介绍递归法。

#递归

咋眼一看,这道题目用递归的话就就一直向左遍历,最后一个就是答案呗?

没有这么简单,一直向左遍历到最后一个,它未必是最后一行啊。

我们来分析一下题目:在树的最后一行找到最左边的值

首先要是最后一行,然后是最左边的值。

如果使用递归法,如何判断是最后一行呢,其实就是深度最大的叶子节点一定是最后一行。

如果对二叉树深度和高度还有点疑惑的话,请看:110.平衡二叉树 (opens new window)。

所以要找深度最大的叶子节点。

那么如何找最左边的呢?可以使用前序遍历(当然中序,后序都可以,因为本题没有 中间节点的处理逻辑,只要左优先就行),保证优先左边搜索,然后记录深度最大的叶子节点,此时就是树的最后一行最左边的值。

递归三部曲:

  1. 确定递归函数的参数和返回值

参数必须有要遍历的树的根节点,还有就是一个int型的变量用来记录最长深度。 这里就不需要返回值了,所以递归函数的返回类型为void。

本题还需要类里的两个全局变量,maxLen用来记录最大深度,result记录最大深度最左节点的数值。

代码如下:

int maxDepth = INT_MIN;   // 全局变量 记录最大深度
int result;       // 全局变量 最大深度最左节点的数值
void traversal(TreeNode* root, int depth)
  1. 确定终止条件

当遇到叶子节点的时候,就需要统计一下最大的深度了,所以需要遇到叶子节点来更新最大深度。

代码如下:

if (root->left == NULL && root->right == NULL) {
    if (depth > maxDepth) {
        maxDepth = depth;           // 更新最大深度
        result = root->val;   // 最大深度最左面的数值
    }
    return;
}
  1. 确定单层递归的逻辑

在找最大深度的时候,递归的过程中依然要使用回溯,代码如下:

                    // 中
if (root->left) {   // 左
    depth++; // 深度加一
    traversal(root->left, depth);
    depth--; // 回溯,深度减一
}
if (root->right) { // 右
    depth++; // 深度加一
    traversal(root->right, depth);
    depth--; // 回溯,深度减一
}
return;

完整代码如下:

class Solution {
public:
    int maxDepth = INT_MIN;
    int result;
    void traversal(TreeNode* root, int depth) {
        if (root->left == NULL && root->right == NULL) {
            if (depth > maxDepth) {
                maxDepth = depth;
                result = root->val;
            }
            return;
        }
        if (root->left) {
            depth++;
            traversal(root->left, depth);
            depth--; // 回溯
        }
        if (root->right) {
            depth++;
            traversal(root->right, depth);
            depth--; // 回溯
        }
        return;
    }
    int findBottomLeftValue(TreeNode* root) {
        traversal(root, 0);
        return result;
    }
};

当然回溯的地方可以精简,精简代码如下:

class Solution {
public:
    int maxDepth = INT_MIN;
    int result;
    void traversal(TreeNode* root, int depth) {
        if (root->left == NULL && root->right == NULL) {
            if (depth > maxDepth) {
                maxDepth = depth;
                result = root->val;
            }
            return;
        }
        if (root->left) {
            traversal(root->left, depth + 1); // 隐藏着回溯
        }
        if (root->right) {
            traversal(root->right, depth + 1); // 隐藏着回溯
        }
        return;
    }
    int findBottomLeftValue(TreeNode* root) {
        traversal(root, 0);
        return result;
    }
};

如果对回溯部分精简的代码 不理解的话,可以看这篇257. 二叉树的所有路径(opens new window)

#迭代法

本题使用层序遍历再合适不过了,比递归要好理解得多!

只需要记录最后一行第一个节点的数值就可以了。

如果对层序遍历不了解,看这篇二叉树:层序遍历登场! (opens new window),这篇里也给出了层序遍历的模板,稍作修改就一过刷了这道题了。

代码如下:

class Solution {
public:
    int findBottomLeftValue(TreeNode* root) {
        queue<TreeNode*> que;
        if (root != NULL) que.push(root);
        int result = 0;
        while (!que.empty()) {
            int size = que.size();
            for (int i = 0; i < size; i++) {
                TreeNode* node = que.front();
                que.pop();
                if (i == 0) result = node->val; // 记录最后一行第一个元素
                if (node->left) que.push(node->left);
                if (node->right) que.push(node->right);
            }
        }
        return result;
    }
};

#总结

本题涉及如下几点:

  • 递归求深度的写法,我们在110.平衡二叉树 中详细的分析了深度应该怎么求,高度应该怎么求。

  • 递归中其实隐藏了回溯,在257. 二叉树的所有路径 中讲解了究竟哪里使用了回溯,哪里隐藏了回溯。

  • 层次遍历,在二叉树:层序遍历登场! 深度讲解了二叉树层次遍历。 所以本题涉及到的点,我们之前都讲解过,这些知识点需要同学们灵活运用,这样就举一反三了。

###

112. 路径总和

力扣题目链

给定一个二叉树和一个目标和,判断该树中是否存在根节点到叶子节点的路径,这条路径上所有节点值相加等于目标和。

说明: 叶子节点是指没有子节点的节点。

示例: 给定如下二叉树,以及目标和 sum = 22,

img

返回 true, 因为存在目标和为 22 的根节点到叶子节点的路径 5->4->11->2。

思路

相信很多同学都会疑惑,递归函数什么时候要有返回值,什么时候没有返回值,特别是有的时候递归函数返回类型为bool类型。

那么接下来我通过详细讲解如下两道题,来回答这个问题:

  • 112.路径总和

  • 113.路径总和ii

这道题我们要遍历从根节点到叶子节点的路径看看总和是不是目标和。

#递归

可以使用深度优先遍历的方式(本题前中后序都可以,无所谓,因为中节点也没有处理逻辑)来遍历二叉树

  1. 确定递归函数的参数和返回类型

参数:需要二叉树的根节点,还需要一个计数器,这个计数器用来计算二叉树的一条边之和是否正好是目标和,计数器为int型。

再来看返回值,递归函数什么时候需要返回值?什么时候不需要返回值?这里总结如下三点:

  • 如果需要搜索整棵二叉树且不用处理递归返回值,递归函数就不要返回值。(这种情况就是本文下半部分介绍的113.路径总和ii)

  • 如果需要搜索整棵二叉树且需要处理递归返回值,递归函数就需要返回值。 (这种情况我们在236. 二叉树的最近公共祖先 中介绍)

  • 如果要搜索其中一条符合条件的路径,那么递归一定需要返回值,因为遇到符合条件的路径了就要及时返回。(本题的情况)

而本题我们要找一条符合条件的路径,所以递归函数需要返回值,及时返回,那么返回类型是什么呢?

如图所示:

112.路径总和

图中可以看出,遍历的路线,并不要遍历整棵树,所以递归函数需要返回值,可以用bool类型表示。

所以代码如下:

bool traversal(treenode* cur, int count)   // 注意函数的返回类型
  1. 确定终止条件

首先计数器如何统计这一条路径的和呢?

不要去累加然后判断是否等于目标和,那么代码比较麻烦,可以用递减,让计数器count初始为目标和,然后每次减去遍历路径节点上的数值。

如果最后count == 0,同时到了叶子节点的话,说明找到了目标和。

如果遍历到了叶子节点,count不为0,就是没找到。

递归终止条件代码如下:

if (!cur->left && !cur->right && count == 0) return true; // 遇到叶子节点,并且计数为0
if (!cur->left && !cur->right) return false; // 遇到叶子节点而没有找到合适的边,直接返回
  1. 确定单层递归的逻辑

因为终止条件是判断叶子节点,所以递归的过程中就不要让空节点进入递归了。

递归函数是有返回值的,如果递归函数返回true,说明找到了合适的路径,应该立刻返回。

代码如下:

if (cur->left) { // 左 (空节点不遍历)
    // 遇到叶子节点返回true,则直接返回true
    if (traversal(cur->left, count - cur->left->val)) return true; // 注意这里有回溯的逻辑
}
if (cur->right) { // 右 (空节点不遍历)
    // 遇到叶子节点返回true,则直接返回true
    if (traversal(cur->right, count - cur->right->val)) return true; // 注意这里有回溯的逻辑
}
return false;

以上代码中是包含着回溯的,没有回溯,如何后撤重新找另一条路径呢。

回溯隐藏在traversal(cur->left, count - cur->left->val)这里, 因为把count - cur->left->val 直接作为参数传进去,函数结束,count的数值没有改变。

为了把回溯的过程体现出来,可以改为如下代码:

if (cur->left) { // 左
    count -= cur->left->val; // 递归,处理节点;
    if (traversal(cur->left, count)) return true;
    count += cur->left->val; // 回溯,撤销处理结果
}
if (cur->right) { // 右
    count -= cur->right->val;
    if (traversal(cur->right, count)) return true;
    count += cur->right->val;
}
return false;

整体代码如下:

class Solution {
private:
    bool traversal(TreeNode* cur, int count) {
        if (!cur->left && !cur->right && count == 0) return true; // 遇到叶子节点,并且计数为0
        if (!cur->left && !cur->right) return false; // 遇到叶子节点直接返回
​
        if (cur->left) { // 左
            count -= cur->left->val; // 递归,处理节点;
            if (traversal(cur->left, count)) return true;
            count += cur->left->val; // 回溯,撤销处理结果
        }
        if (cur->right) { // 右
            count -= cur->right->val; // 递归,处理节点;
            if (traversal(cur->right, count)) return true;
            count += cur->right->val; // 回溯,撤销处理结果
        }
        return false;
    }
​
public:
    bool hasPathSum(TreeNode* root, int sum) {
        if (root == NULL) return false;
        return traversal(root, sum - root->val);
    }
};

以上代码精简之后如下:

class Solution {
public:
    bool hasPathSum(TreeNode* root, int sum) {
        if (!root) return false;
        if (!root->left && !root->right && sum == root->val) {
            return true;
        }
        return hasPathSum(root->left, sum - root->val) || hasPathSum(root->right, sum - root->val);
    }
};
自己提交版
class Solution {
private:
    bool searchPath(TreeNode* node,int count){
        if(node==nullptr) return false;
        count -= node->val;
        if(node->left==nullptr&&node->right==nullptr&&count==0) return true;
        if(node->left==nullptr&&node->right==nullptr&&count!=0) return false;
        bool left=false,right=false;
        if(node->left) left = searchPath(node->left,count);
        if(node->right) right = searchPath(node->right,count);
        return left||right;
    }
public:
    bool hasPathSum(TreeNode* root, int targetSum) {
        
        return searchPath(root,targetSum);
    }
};

#迭代

跳过

113. 路径总和ii

力扣题目链接

给定一个二叉树和一个目标和,找到所有从根节点到叶子节点路径总和等于给定目标和的路径。

说明: 叶子节点是指没有子节点的节点。

示例: 给定如下二叉树,以及目标和 sum = 22,

113.路径总和ii1.png

#思路

113.路径总和ii要遍历整个树,找到所有路径,所以递归函数不要返回值!

如图:

113.路径总和ii

为了尽可能的把细节体现出来,我写出如下代码(这份代码并不简洁,但是逻辑非常清晰

class solution {
private:
    vector<vector<int>> result;
    vector<int> path;
    // 递归函数不需要返回值,因为我们要遍历整个树
    void traversal(TreeNode* cur, int count) {
        if (!cur->left && !cur->right && count == 0) { // 遇到了叶子节点且找到了和为sum的路径
            result.push_back(path);
            return;
        }
​
        if (!cur->left && !cur->right) return ; // 遇到叶子节点而没有找到合适的边,直接返回
​
        if (cur->left) { // 左 (空节点不遍历)
            path.push_back(cur->left->val);
            count -= cur->left->val;
            traversal(cur->left, count);    // 递归
            count += cur->left->val;        // 回溯
            path.pop_back();                // 回溯
        }
        if (cur->right) { // 右 (空节点不遍历)
            path.push_back(cur->right->val);
            count -= cur->right->val;
            traversal(cur->right, count);   // 递归
            count += cur->right->val;       // 回溯
            path.pop_back();                // 回溯
        }
        return ;
    }
​
public:
    vector<vector<int>> pathSum(TreeNode* root, int sum) {
        result.clear();
        path.clear();
        if (root == NULL) return result;
        path.push_back(root->val); // 把根节点放进路径
        traversal(root, sum - root->val);
        return result;
    }
};

至于113. 路径总和ii 的迭代法我并没有写,用迭代方式记录所有路径比较麻烦,也没有必要,如果大家感兴趣的话,可以再深入研究研究。

#总结

本篇通过leetcode上112. 路径总和 和 113. 路径总和ii 详细的讲解了 递归函数什么时候需要返回值,什么不需要返回值。

这两道题目是掌握这一知识点非常好的题目,大家看完本篇文章再去做题,就会感受到搜索整棵树和搜索某一路径的差别。

对于112. 路径总和,我依然给出了递归法和迭代法,这种题目其实用迭代法会复杂一些,能掌握递归方式就够了!

自己提交版
class Solution {
public:
    vector<vector<int>> result;
    vector<int> path;
    void serchPath(TreeNode* node,int count,vector<int> path){
        if(node==nullptr) return;
        path.push_back(node->val);
        count-=node->val;
        if(node->left==nullptr&&node->right==nullptr&&count==0){
            result.push_back(path);
            return;
        }
        if(node->left) serchPath(node->left,count,path);
        if(node->right) serchPath(node->right,count,path);
    
    }
​
    vector<vector<int>> pathSum(TreeNode* root, int targetSum) {
        serchPath(root,targetSum,path);
        return result;
    }
};

106.从中序与后序遍历序列构造二叉树

力扣题目链接

根据一棵树的中序遍历与后序遍历构造二叉树。

注意: 你可以假设树中没有重复的元素。

例如,给出

  • 中序遍历 inorder = [9,3,15,20,7]

  • 后序遍历 postorder = [9,15,7,20,3] 返回如下的二叉树:

106. 从中序与后序遍历序列构造二叉树1

思路

首先回忆一下如何根据两个顺序构造一个唯一的二叉树,相信理论知识大家应该都清楚,就是以 后序数组的最后一个元素为切割点,先切中序数组,根据中序数组,反过来再切后序数组。一层一层切下去,每次后序数组最后一个元素就是节点元素。

如果让我们肉眼看两个序列,画一棵二叉树的话,应该分分钟都可以画出来。

流程如图:

106.从中序与后序遍历序列构造二叉树

那么代码应该怎么写呢?

说到一层一层切割,就应该想到了递归。

来看一下一共分几步:

  • 第一步:如果数组大小为零的话,说明是空节点了。

  • 第二步:如果不为空,那么取后序数组最后一个元素作为节点元素。

  • 第三步:找到后序数组最后一个元素在中序数组的位置,作为切割点

  • 第四步:切割中序数组,切成中序左数组和中序右数组 (顺序别搞反了,一定是先切中序数组)

  • 第五步:切割后序数组,切成后序左数组和后序右数组

  • 第六步:递归处理左区间和右区间

不难写出如下代码:(先把框架写出来)

TreeNode* traversal (vector<int>& inorder, vector<int>& postorder) {
​
    // 第一步
    if (postorder.size() == 0) return NULL;
​
    // 第二步:后序遍历数组最后一个元素,就是当前的中间节点
    int rootValue = postorder[postorder.size() - 1];
    TreeNode* root = new TreeNode(rootValue);
​
    // 叶子节点
    if (postorder.size() == 1) return root;
​
    // 第三步:找切割点
    int delimiterIndex;
    for (delimiterIndex = 0; delimiterIndex < inorder.size(); delimiterIndex++) {
        if (inorder[delimiterIndex] == rootValue) break;
    }
​
    // 第四步:切割中序数组,得到 中序左数组和中序右数组
    // 第五步:切割后序数组,得到 后序左数组和后序右数组
​
    // 第六步
    root->left = traversal(中序左数组, 后序左数组);
    root->right = traversal(中序右数组, 后序右数组);
​
    return root;
}

此时应该注意确定切割的标准,是左闭右开,还有左开右闭,还是左闭右闭,这个就是不变量,要在递归中保持这个不变量。

在切割的过程中会产生四个区间,把握不好不变量的话,一会左闭右开,一会左闭右闭,必然乱套!

首先要切割中序数组,为什么先切割中序数组呢?

切割点在后序数组的最后一个元素,就是用这个元素来切割中序数组的,所以必要先切割中序数组。

中序数组相对比较好切,找到切割点(后序数组的最后一个元素)在中序数组的位置,然后切割,如下代码中我坚持左闭右开的原则:

// 找到中序遍历的切割点
int delimiterIndex;
for (delimiterIndex = 0; delimiterIndex < inorder.size(); delimiterIndex++) {
    if (inorder[delimiterIndex] == rootValue) break;
}
​
// 左闭右开区间:[0, delimiterIndex)
vector<int> leftInorder(inorder.begin(), inorder.begin() + delimiterIndex);
// [delimiterIndex + 1, end)
vector<int> rightInorder(inorder.begin() + delimiterIndex + 1, inorder.end() );

接下来就要切割后序数组了。

首先后序数组的最后一个元素指定不能要了,这是切割点 也是 当前二叉树中间节点的元素,已经用了。

后序数组的切割点怎么找?

后序数组没有明确的切割元素来进行左右切割,不像中序数组有明确的切割点,切割点左右分开就可以了。

此时有一个很重的点,就是中序数组大小一定是和后序数组的大小相同的(这是必然)。

中序数组我们都切成了左中序数组和右中序数组了,那么后序数组就可以按照左中序数组的大小来切割,切成左后序数组和右后序数组。

代码如下:

// postorder 舍弃末尾元素,因为这个元素就是中间节点,已经用过了
postorder.resize(postorder.size() - 1);
​
// 左闭右开,注意这里使用了左中序数组大小作为切割点:[0, leftInorder.size)
vector<int> leftPostorder(postorder.begin(), postorder.begin() + leftInorder.size());
// [leftInorder.size(), end)
vector<int> rightPostorder(postorder.begin() + leftInorder.size(), postorder.end());

此时,中序数组切成了左中序数组和右中序数组,后序数组切割成左后序数组和右后序数组。

接下来可以递归了,代码如下:

root->left = traversal(leftInorder, leftPostorder);
root->right = traversal(rightInorder, rightPostorder);

完整代码如下:

class Solution {
private:
    TreeNode* traversal (vector<int>& inorder, vector<int>& postorder) {
        if (postorder.size() == 0) return NULL;
​
        // 后序遍历数组最后一个元素,就是当前的中间节点
        int rootValue = postorder[postorder.size() - 1];
        TreeNode* root = new TreeNode(rootValue);
​
        // 叶子节点
        if (postorder.size() == 1) return root;
​
        // 找到中序遍历的切割点
        int delimiterIndex;
        for (delimiterIndex = 0; delimiterIndex < inorder.size(); delimiterIndex++) {
            if (inorder[delimiterIndex] == rootValue) break;
        }
​
        // 切割中序数组
        // 左闭右开区间:[0, delimiterIndex)
        vector<int> leftInorder(inorder.begin(), inorder.begin() + delimiterIndex);
        // [delimiterIndex + 1, end)
        vector<int> rightInorder(inorder.begin() + delimiterIndex + 1, inorder.end() );
​
        // postorder 舍弃末尾元素
        postorder.resize(postorder.size() - 1);
​
        // 切割后序数组
        // 依然左闭右开,注意这里使用了左中序数组大小作为切割点
        // [0, leftInorder.size)
        vector<int> leftPostorder(postorder.begin(), postorder.begin() + leftInorder.size());
        // [leftInorder.size(), end)
        vector<int> rightPostorder(postorder.begin() + leftInorder.size(), postorder.end());
​
        root->left = traversal(leftInorder, leftPostorder);
        root->right = traversal(rightInorder, rightPostorder);
​
        return root;
    }
public:
    TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {
        if (inorder.size() == 0 || postorder.size() == 0) return NULL;
        return traversal(inorder, postorder);
    }
};

此时应该发现了,如上的代码性能并不好,因为每层递归定义了新的vector(就是数组),既耗时又耗空间,但上面的代码是最好理解的,为了方便读者理解,所以用如上的代码来讲解。

下面给出用下标索引写出的代码版本:(思路是一样的,只不过不用重复定义vector了,每次用下标索引来分割)

class Solution {
private:
    // 中序区间:[inorderBegin, inorderEnd),后序区间[postorderBegin, postorderEnd)
    TreeNode* traversal (vector<int>& inorder, int inorderBegin, int inorderEnd, vector<int>& postorder, int postorderBegin, int postorderEnd) {
        if (postorderBegin == postorderEnd) return NULL;
​
        int rootValue = postorder[postorderEnd - 1];
        TreeNode* root = new TreeNode(rootValue);
​
        if (postorderEnd - postorderBegin == 1) return root;
​
        int delimiterIndex;
        for (delimiterIndex = inorderBegin; delimiterIndex < inorderEnd; delimiterIndex++) {
            if (inorder[delimiterIndex] == rootValue) break;
        }
        // 切割中序数组
        // 左中序区间,左闭右开[leftInorderBegin, leftInorderEnd)
        int leftInorderBegin = inorderBegin;
        int leftInorderEnd = delimiterIndex;
        // 右中序区间,左闭右开[rightInorderBegin, rightInorderEnd)
        int rightInorderBegin = delimiterIndex + 1;
        int rightInorderEnd = inorderEnd;
​
        // 切割后序数组
        // 左后序区间,左闭右开[leftPostorderBegin, leftPostorderEnd)
        int leftPostorderBegin =  postorderBegin;
        int leftPostorderEnd = postorderBegin + delimiterIndex - inorderBegin; // 终止位置是 需要加上 中序区间的大小size
        // 右后序区间,左闭右开[rightPostorderBegin, rightPostorderEnd)
        int rightPostorderBegin = postorderBegin + (delimiterIndex - inorderBegin);
        int rightPostorderEnd = postorderEnd - 1; // 排除最后一个元素,已经作为节点了
​
        root->left = traversal(inorder, leftInorderBegin, leftInorderEnd,  postorder, leftPostorderBegin, leftPostorderEnd);
        root->right = traversal(inorder, rightInorderBegin, rightInorderEnd, postorder, rightPostorderBegin, rightPostorderEnd);
​
        return root;
    }
public:
    TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {
        if (inorder.size() == 0 || postorder.size() == 0) return NULL;
        // 左闭右开的原则
        return traversal(inorder, 0, inorder.size(), postorder, 0, postorder.size());
    }
};

105.从前序与中序遍历序列构造二叉树

力扣题目链接

根据一棵树的前序遍历与中序遍历构造二叉树。

注意: 你可以假设树中没有重复的元素。

例如,给出

前序遍历 preorder = [3,9,20,15,7] 中序遍历 inorder = [9,3,15,20,7] 返回如下的二叉树:

105. 从前序与中序遍历序列构造二叉树

105.从前序与中序遍历序列构造二叉树,最后版本,C++代码:

class Solution {
private:
        TreeNode* traversal (vector<int>& inorder, int inorderBegin, int inorderEnd, vector<int>& preorder, int preorderBegin, int preorderEnd) {
        if (preorderBegin == preorderEnd) return NULL;
​
        int rootValue = preorder[preorderBegin]; // 注意用preorderBegin 不要用0
        TreeNode* root = new TreeNode(rootValue);
​
        if (preorderEnd - preorderBegin == 1) return root;
​
        int delimiterIndex;
        for (delimiterIndex = inorderBegin; delimiterIndex < inorderEnd; delimiterIndex++) {
            if (inorder[delimiterIndex] == rootValue) break;
        }
        // 切割中序数组
        // 中序左区间,左闭右开[leftInorderBegin, leftInorderEnd)
        int leftInorderBegin = inorderBegin;
        int leftInorderEnd = delimiterIndex;
        // 中序右区间,左闭右开[rightInorderBegin, rightInorderEnd)
        int rightInorderBegin = delimiterIndex + 1;
        int rightInorderEnd = inorderEnd;
​
        // 切割前序数组
        // 前序左区间,左闭右开[leftPreorderBegin, leftPreorderEnd)
        int leftPreorderBegin =  preorderBegin + 1;
        int leftPreorderEnd = preorderBegin + 1 + delimiterIndex - inorderBegin; // 终止位置是起始位置加上中序左区间的大小size
        // 前序右区间, 左闭右开[rightPreorderBegin, rightPreorderEnd)
        int rightPreorderBegin = preorderBegin + 1 + (delimiterIndex - inorderBegin);
        int rightPreorderEnd = preorderEnd;
​
        root->left = traversal(inorder, leftInorderBegin, leftInorderEnd,  preorder, leftPreorderBegin, leftPreorderEnd);
        root->right = traversal(inorder, rightInorderBegin, rightInorderEnd, preorder, rightPreorderBegin, rightPreorderEnd);
​
        return root;
    }
​
public:
    TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
        if (inorder.size() == 0 || preorder.size() == 0) return NULL;
​
        // 参数坚持左闭右开的原则
        return traversal(inorder, 0, inorder.size(), preorder, 0, preorder.size());
    }
};

#思考题

前序和中序可以唯一确定一棵二叉树。

后序和中序可以唯一确定一棵二叉树。

那么前序和后序可不可以唯一确定一棵二叉树呢?

前序和后序不能唯一确定一棵二叉树!,因为没有中序遍历无法确定左右部分,也就是无法分割。

举一个例子:

106.从中序与后序遍历序列构造二叉树2

tree1 的前序遍历是[1 2 3], 后序遍历是[3 2 1]。

tree2 的前序遍历是[1 2 3], 后序遍历是[3 2 1]。

那么tree1 和 tree2 的前序和后序完全相同,这是一棵树么,很明显是两棵树!

所以前序和后序不能唯一确定一棵二叉树!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/286891.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

云原生学习系列之基础环境准备(虚拟机搭建)

最近由于工作需要开始学习云原生相关内容&#xff0c;为方便学习操作&#xff0c;准备在外网搭建自己的环境&#xff0c;然后进行相关的练习&#xff0c;搭建环境的第一步便是虚拟机的安装。 基础软件 这里我用到的是CentOS-7-x86_64的操作系统。 链接&#xff1a;https://pa…

使用宝塔在Linux面板搭建网站,并实现公网远程访问

文章目录 前言1. 环境安装2. 安装cpolar内网穿透3. 内网穿透4. 固定http地址5. 配置二级子域名6. 创建一个测试页面 前言 宝塔面板作为简单好用的服务器运维管理面板&#xff0c;它支持Linux/Windows系统&#xff0c;我们可用它来一键配置LAMP/LNMP环境、网站、数据库、FTP等&…

【Web】CTFSHOW元旦水友赛部分wp

目录 ①easy_include ②easy_web ③easy_login web一共5题&#xff0c;我出了3题&#xff0c;巧的是好像师傅们也只出了3题&#xff0c;跨年拿旗还是很快乐的&#xff0c;下面直接贴出自己的wp. ①easy_include pearcmd不解释 这里主要是 &#xff0c;file://协议支持以fi…

CSS animation动画和关键帧实现轮播图效果HTML

CSS animation动画和关键帧实现轮播图效果HTML 这轮播图效果使用h5和css3实现效果&#xff0c;不需要js控制&#xff0c;但是其中的缺点就是不能使用鼠标进行切换效果。 具有代码如下 <!DOCTYPE html> <html lang"en"><head><meta charset&quo…

使用echarts的bmap配置项绘制区域轮廓遮罩

示例图 代码 <template><div id"map" style"width: 100%; height: 100vh"></div> </template><script> import * as echarts from "echarts"; import "echarts/extension/bmap/bmap"; export default…

第28关 k8s监控实战之Prometheus(一)

------> 课程视频同步分享在今日头条和B站 大家好&#xff0c;我是博哥爱运维。对于运维开发人员来说&#xff0c;不管是哪个平台服务&#xff0c;监控都是非常关键重要的。 在传统服务里面&#xff0c;我们通常会到zabbix、open-falcon、netdata来做服务的监控&#xff0…

Zookeeper之Java客户端实战

ZooKeeper应用的开发主要通过Java客户端API去连接和操作ZooKeeper集群。可供选择的Java客户端API有&#xff1a; ZooKeeper官方的Java客户端API。第三方的Java客户端API&#xff0c;比如Curator。 接下来我们将逐一学习一下这两个java客户端是如何操作zookeeper的。 1. ZooKe…

2.4信道复用技术

目录 2.4信道复用技术2.4.1频分复用、时分复用和统计时分复用频分复用FDM&#xff08;Frequency Division Multiplexing&#xff09;时分复用TDM&#xff08;Time Division Multiplexing&#xff09;统计时分复用STDM&#xff08;Statistic TDM&#xff09; 2.4.2波分复用2.4.3…

IIS通过ARR实现负载均衡

一、实现整体方式介绍 项目中部署在windows服务器上的项目,需要部署负载均衡,本来想用nginx来配置的,奈何iis上有几个项目,把80端口和443端口占用了,nginx就用不了了(因为通过域名访问的,必须要用80和443端口),只能通过IIS的方式实现了。 这里用2个服务在一台机器上…

mysql: 2006, ‘MySQL server has gone away‘

一、错误问题 这个问题是在迁移数据库、备份还原或数据导入时报错&#xff1a;2006, ‘MySQL server has gone away‘ 二、出现原因 sql操作的时间过长&#xff0c;或者是传送的数据太大(例如使用insert ... values的语句过长&#xff0c; 这种情况可以通过修改max_allowed_pac…

魔改Stable Diffusion,开源创新“单目深度估计”模型

单目深度估计一直是计算机视觉领域的难点。仅凭一张 RGB 图像,想要还原出场景的三维结构,在几何结构上非常不确定,必须依赖复杂的场景理解能力。 即便使用更强大的深度学习模型来实现&#xff0c;也面临算力需求高、图像数据注释量大、泛化能力弱等缺点。 为了解决这些难题&a…

C# WinForm MessageBox自定义按键文本 COM组件版

c# 更改弹窗MessageBox按钮文字_c# messagebox.show 字体-CSDN博客 需要用到大佬上传到百度云盘的Hook类&#xff0c;在大佬给的例子的基础上改动了点。 加了ok按键&#xff0c;还原了最基础的messageBox。 为了适配多语言&#xff0c;增加ReadBtnLanguge方法。 应用时自己…

rime中州韵 inputShow lua Filter

在 rime中州韵 inputShow lua Translator 一文中&#xff0c;我们通过 inputShow.lua 定制了 inputShow_translator&#xff0c;这使得我们的输入方案可以将用户输入的字符透传到候选列表中来。如下&#x1f447;&#xff1a; &#x1f446;上图中我们在候选列表中看到了 inpu…

vmware安装龙蜥操作系统

vmware安装龙蜥操作系统 1、下载龙蜥操作系统 8.8 镜像文件2、安装龙蜥操作系统 8.83、配置龙蜥操作系统 8.83.1、配置静态IP地址 和 dns3.2、查看磁盘分区3.3、查看系统版本 1、下载龙蜥操作系统 8.8 镜像文件 这里选择 2023年2月发布的 8.8 版本 官方下载链接 https://mirro…

计算机网络-以太网交换基础

一、网络设备的演变 最初的网络在两台设备间使用传输介质如网线等进行连接就可以进行通信。但是随着数据的传输需求&#xff0c;多个设备需要进行数据通信时就需要另外的设备进行网络互联&#xff0c;并且随着网络传输的需求不断更新升级。从一开始的两台设备互联到企业部门内部…

如何在iPhone设备中查看崩溃日志

​ 目录 如何在iPhone设备中查看崩溃日志 摘要 引言 导致iPhone设备崩溃的主要原因是什么&#xff1f; 使用克魔助手查看iPhone设备中的崩溃日志 奔溃日志分析 总结 摘要 本文介绍了如何在iPhone设备中查看崩溃日志&#xff0c;以便调查崩溃的原因。我们将展示三种不同的…

QQ邮件发送(PHP的Laravel)

1. 开启 QQ 邮箱的 SMTP 支持 2.里面会一个类似于密码之类&#xff08;复制一下&#xff09; 3.然后再 .env文件里面配置一下 MAIL_DRIVERsmtp —— 使用支持 ESMTP 的 SMTP 服务器发送邮件&#xff1b; MAIL_HOSTsmtp.qq.com —— QQ 邮箱的 SMTP 服务器地址&#xff0c;必…

欢迎提交pr共同改进项目, pr的含义?

"提交PR"在软件开发和编程领域是一个常用术语&#xff0c;特别是在使用版本控制系统如Git时。这里的“PR”指的是“Pull Request”&#xff0c;它是一种通知项目维护人员您已经完成了一些代码改动并希望将这些改动合并到主项目中的方式。简单来说&#xff0c;当您对一…

《3D数学基础-图形和游戏开发》阅读笔记 | 3D数学基础 (学习中)

文章目录 3D数学基础矢量/向量概述 - 什么是向量单位矢量&#xff1a;只关注方向不关注大小 数学运算矢量的加法与减法减法的几何意义计算一个点到另一个点的位移矢量的点积与叉积 矩阵矩阵的几何意义 3D数学基础 矢量/向量 在笔记中 变量使用小写字母表示&#xff0c;a由于…

内存管理机制

内存管理机制与内存映射相关。 一、C与C 之所以将C与C放在一起是因为C是C的超集&#xff1b; 但是C是面向过程语言&#xff0c;C是面向对象的语言&#xff1b; C与C都可以使用malloc、calloc、realloc来申请内存空间&#xff1b; 其中void* malloc(size_t size)是在内存的动态…