文章目录
- 一、数据预处理
- 1.加载数据
- 2.构建词典
- 3.生成数据批次和迭代器
- 二、模型构建
- 1.搭建模型
- 2.初始化模型
- 3.定义训练与评估函数
- 三、训练模型
- 1.拆分数据集并运行模型
- 四、总结
- 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
- 🍖 原作者:K同学啊
一、数据预处理
1.加载数据
import torch
import torch.nn as nn
import torchvision
from torchvision import transforms, datasets
import os, PIL, pathlib, warnings
warnings.filterwarnings("ignore")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device
device(type=‘cpu’)
import pandas as pd
# 加载自定义中文数据
train_data = pd.read_csv('train.csv', sep='\t', header=None)
train_data.head()
0 | 1 | |
---|---|---|
0 | 还有双鸭山到淮阴的汽车票吗13号的 | Travel-Query |
1 | 从这里怎么回家 | Travel-Query |
2 | 随便播放一首专辑阁楼里的佛里的歌 | Music-Play |
3 | 给看一下墓王之王嘛 | FilmTele-Play |
4 | 我想看挑战两把s686打突变团竞的游戏视频 | Video-Play |
# 构造数据集迭代器
def coustom_data_iter(texts, labels):
for x, y in zip(texts, labels):
yield x, y
x = train_data[0].values[:]
# 多类标签的one-shot展开
y = train_data[1].values[:]
2.构建词典
from gensim.models import Word2Vec
import numpy as np
# 训练Word2vec浅层模型
w2v = Word2Vec(vector_size = 100, # 是指特征向量的维度,默认为100
min_count = 3) # 可以对字典做截断,词频少于min_count次数的单词会被丢弃掉,默认值为5
w2v.build_vocab(x)
w2v.train(x,
total_examples=w2v.corpus_count,
epochs=20)
(2732785, 3663560)
Word2Vec可以直接训练模型,一步到位。这里分了三步
●第一步构建一个空模型
●第二步使用 build_vocab 方法根据输入的文本数据 x 构建词典。build_vocab 方法会统计输入文本中每个词汇出现的次数,并按照词频从高到低的顺序将词汇加入词典中。
●第三步使用 train 方法对模型进行训练,total_examples 参数指定了训练时使用的文本数量,这里使用的是 w2v.corpus_count 属性,表示输入文本的数量
如果一步到位的话代码为:
w2v = Word2Vec(x, vector_size=100, min_count=3, epochs=20)
# 将文本转化为向量
def average_vec(text):
vec = np.zeros(100).reshape((1,100))
for word in text:
try:
vec += w2v.wv[word].reshape((1,100))
except KeyError:
continue
return vec
# 将词向量保存为Ndarray
x_vec = np.concatenate([average_vec(z) for z in x])
# 保存Word2Vec模型及词向量
w2v.save('w2v_model.pkl')
train_iter = coustom_data_iter(x_vec, y)
len(x), len(x_vec)
(12100, 12100)
label_name = list(set(train_data[1].values[:]))
print(label_name)
[‘Travel-Query’, ‘Radio-Listen’, ‘Alarm-Update’, ‘FilmTele-Play’, ‘TVProgram-Play’, ‘HomeAppliance-Control’, ‘Calendar-Query’, ‘Audio-Play’, ‘Video-Play’, ‘Other’, ‘Music-Play’, ‘Weather-Query’]
3.生成数据批次和迭代器
text_pipeline = lambda x: average_vec(x)
label_pipeline = lambda x: label_name.index(x)
text_pipeline("你在干嘛")
array([[ 0.44942591, 0.37034334, 0.82435736, 0.57583929, -2.19971114,
-0.26266199, 1.54612615, 0.86057729, 0.94607782, -0.56024504,
-1.2855403 , -3.96268934, 1.00411272, -0.78717487, 0.11495599,
1.7602468 , 2.57005858, -2.04502518, 4.77852516, -1.15009709,
2.75658896, -0.7439712 , -0.50604325, 0.23402849, -0.85734205,
-0.64015828, -1.63281712, -1.22751366, 2.32347407, -2.94733901,
1.86662954, 1.20093471, -0.22566201, -0.02635491, 1.06643996,
0.17282215, -0.57236505, 3.87719914, -2.36707568, 1.28222315,
0.16626818, 0.52857486, 0.2673108 , 1.32945235, -0.51124085,
0.68514908, 0.87900299, -0.9519761 , -2.69660458, 1.78133809,
-0.16500359, -2.11181024, -1.16635181, 1.22090494, -0.76275884,
-0.01114198, 0.42615444, -1.23754779, 0.07603779, -0.04253516,
1.32692097, -1.66303211, 2.16462026, -0.9799156 , -0.9070952 ,
0.87778991, -1.08169729, 0.92559687, 0.64850095, 0.20967194,
0.26563513, 1.03787032, 2.3587795 , -0.7511736 , 0.74099658,
-0.15902402, -2.69873536, 0.13621271, 1.08319706, -0.18128317,
-1.8476568 , -0.67964274, -2.43600948, 2.98213428, -1.72624808,
-0.87052085, 2.28517788, -1.87188464, -0.26412555, -0.37503278,
1.51758769, -1.25159131, 0.87080194, 0.85611653, 0.85986885,
-0.60930844, -0.11496616, 0.66294981, -2.06530389, 0.11790894]])
label_pipeline("Travel-Query")
0
from torch.utils.data import DataLoader
def collate_batch(batch):
label_list, text_list= [], []
for (_text, _label) in batch:
# 标签列表
label_list.append(label_pipeline(_label))
# 文本列表
processed_text = torch.tensor(text_pipeline(_text), dtype=torch.float32)
text_list.append(processed_text)
label_list = torch.tensor(label_list, dtype=torch.int64)
text_list = torch.cat(text_list)
return text_list.to(device), label_list.to(device)
# 数据加载器,调用示例
dataloader = DataLoader(train_iter,
batch_size=8,
shuffle=False,
collate_fn=collate_batch)
二、模型构建
1.搭建模型
from torch import nn
class TextClassificationModel(nn.Module):
def __init__(self, num_class):
super(TextClassificationModel, self).__init__()
self.fc = nn.Linear(100, num_class)
def forward(self, text):
return self.fc(text)
2.初始化模型
num_class = len(label_name)
vocab_size = 100000
em_size = 12
model = TextClassificationModel(num_class).to(device)
3.定义训练与评估函数
import time
def train(dataloader):
model.train() # 切换到训练模式
total_acc, train_loss, total_count = 0, 0, 0
log_interval = 50
start_time = time.time()
for idx, (text, label) in enumerate(dataloader):
predicted_label = model(text)
optimizer.zero_grad() # grad属性归零
loss = criterion(predicted_label, label) # 计算网络输出和真实值之间的差距,label为真实值
loss.backward() # 反向传播
torch.nn.utils.clip_grad_norm_(model.parameters(), 0.1) # 梯度裁剪
optimizer.step() # 每一步自东更新
# 记录acc与loss
total_acc += (predicted_label.argmax(1) == label).sum().item()
train_loss += loss.item()
total_count += label.size(0)
if idx % log_interval == 0 and idx > 0:
elapsed = time.time() - start_time
print('| epoch {:1d} | {:4d}/{:4d} batches'
'| train_acc {:4.3f} train_loss {:4.5f}'.format(epoch, idx, len(dataloader),
total_acc/total_count, train_loss/total_count))
total_acc, train_loss, total_count = 0, 0, 0
start_time = time.time()
def evaluate(dataloader):
model.eval() # 切换为测试模式
total_acc, train_loss, total_count = 0, 0, 0
with torch.no_grad():
for idx, (text,label) in enumerate(dataloader):
predicted_label = model(text)
loss = criterion(predicted_label, label) # 计算loss值
# 记录测试数据
total_acc += (predicted_label.argmax(1) == label).sum().item()
train_loss += loss.item()
total_count += label.size(0)
return total_acc/total_count, train_loss/total_count
三、训练模型
1.拆分数据集并运行模型
from torch.utils.data.dataset import random_split
from torchtext.data.functional import to_map_style_dataset
# 超参数
EPOCHS = 10
LR = 5
BATCH_SIZE = 64
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=LR)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1.0, gamma=0.1)
total_accu = None
# 构建数据集
train_iter = coustom_data_iter(train_data[0].values[:], train_data[1].values[:])
train_dataset = to_map_style_dataset(train_iter)
split_train_, split_valid_ = random_split(train_dataset,
[int(len(train_dataset)*0.8), int(len(train_dataset)*0.2)])
train_dataloader = DataLoader(split_train_, batch_size=BATCH_SIZE,
shuffle=True, collate_fn=collate_batch)
valid_dataloader = DataLoader(split_valid_, batch_size=BATCH_SIZE,
shuffle=True, collate_fn=collate_batch)
for epoch in range(1, EPOCHS + 1):
epoch_start_time = time.time()
train(train_dataloader)
val_acc, val_loss = evaluate(valid_dataloader)
# 获取当前的学习率
lr = optimizer.state_dict()['param_groups'][0]['lr']
if total_accu is not None and total_accu > val_acc:
scheduler.step()
else:
total_accu = val_acc
print('-' * 69)
print('| epoch {:1d} | time: {:4.2f}s | '
'valid_acc {:4.3f} valid_loss {:4.3f} | lr {:4.6f}'.format(epoch,
time.time() - epoch_start_time,
val_acc,val_loss,lr))
print('-' * 69)
| epoch 1 | 50/ 152 batches| train_acc 0.737 train_loss 0.02661
| epoch 1 | 100/ 152 batches| train_acc 0.814 train_loss 0.01831
| epoch 1 | 150/ 152 batches| train_acc 0.829 train_loss 0.01839
---------------------------------------------------------------------
| epoch 1 | time: 0.32s | valid_acc 0.803 valid_loss 0.026 | lr 5.000000
---------------------------------------------------------------------
| epoch 2 | 50/ 152 batches| train_acc 0.831 train_loss 0.01848
| epoch 2 | 100/ 152 batches| train_acc 0.852 train_loss 0.01733
| epoch 2 | 150/ 152 batches| train_acc 0.836 train_loss 0.01894
---------------------------------------------------------------------
| epoch 2 | time: 0.26s | valid_acc 0.783 valid_loss 0.029 | lr 5.000000
---------------------------------------------------------------------
| epoch 3 | 50/ 152 batches| train_acc 0.877 train_loss 0.01177
| epoch 3 | 100/ 152 batches| train_acc 0.904 train_loss 0.00813
| epoch 3 | 150/ 152 batches| train_acc 0.897 train_loss 0.00820
---------------------------------------------------------------------
| epoch 3 | time: 0.26s | valid_acc 0.877 valid_loss 0.010 | lr 0.500000
---------------------------------------------------------------------
| epoch 4 | 50/ 152 batches| train_acc 0.896 train_loss 0.00757
| epoch 4 | 100/ 152 batches| train_acc 0.903 train_loss 0.00654
| epoch 4 | 150/ 152 batches| train_acc 0.899 train_loss 0.00722
---------------------------------------------------------------------
| epoch 4 | time: 0.26s | valid_acc 0.888 valid_loss 0.009 | lr 0.500000
---------------------------------------------------------------------
| epoch 5 | 50/ 152 batches| train_acc 0.903 train_loss 0.00619
| epoch 5 | 100/ 152 batches| train_acc 0.897 train_loss 0.00631
| epoch 5 | 150/ 152 batches| train_acc 0.897 train_loss 0.00678
---------------------------------------------------------------------
| epoch 5 | time: 0.27s | valid_acc 0.880 valid_loss 0.008 | lr 0.500000
---------------------------------------------------------------------
| epoch 6 | 50/ 152 batches| train_acc 0.900 train_loss 0.00611
| epoch 6 | 100/ 152 batches| train_acc 0.904 train_loss 0.00543
| epoch 6 | 150/ 152 batches| train_acc 0.912 train_loss 0.00522
---------------------------------------------------------------------
| epoch 6 | time: 0.26s | valid_acc 0.888 valid_loss 0.008 | lr 0.050000
---------------------------------------------------------------------
| epoch 7 | 50/ 152 batches| train_acc 0.903 train_loss 0.00555
| epoch 7 | 100/ 152 batches| train_acc 0.919 train_loss 0.00477
| epoch 7 | 150/ 152 batches| train_acc 0.902 train_loss 0.00590
---------------------------------------------------------------------
| epoch 7 | time: 0.26s | valid_acc 0.888 valid_loss 0.008 | lr 0.005000
---------------------------------------------------------------------
| epoch 8 | 50/ 152 batches| train_acc 0.909 train_loss 0.00523
| epoch 8 | 100/ 152 batches| train_acc 0.906 train_loss 0.00561
| epoch 8 | 150/ 152 batches| train_acc 0.911 train_loss 0.00533
---------------------------------------------------------------------
| epoch 8 | time: 0.27s | valid_acc 0.888 valid_loss 0.008 | lr 0.000500
---------------------------------------------------------------------
| epoch 9 | 50/ 152 batches| train_acc 0.914 train_loss 0.00485
| epoch 9 | 100/ 152 batches| train_acc 0.902 train_loss 0.00578
| epoch 9 | 150/ 152 batches| train_acc 0.910 train_loss 0.00554
---------------------------------------------------------------------
| epoch 9 | time: 0.26s | valid_acc 0.888 valid_loss 0.008 | lr 0.000050
---------------------------------------------------------------------
| epoch 10 | 50/ 152 batches| train_acc 0.907 train_loss 0.00569
| epoch 10 | 100/ 152 batches| train_acc 0.911 train_loss 0.00496
| epoch 10 | 150/ 152 batches| train_acc 0.908 train_loss 0.00548
---------------------------------------------------------------------
| epoch 10 | time: 0.28s | valid_acc 0.888 valid_loss 0.008 | lr 0.000005
---------------------------------------------------------------------
test_acc, test_loss = evaluate(valid_dataloader)
print('模型准确率为:{:5.4f}'.format(test_acc))
模型准确率为:0.8876
def predict(text, text_pipeline):
with torch.no_grad():
text = torch.tensor(text_pipeline(text), dtype=torch.float32)
print(text.shape)
output = model(text)
return output.argmax(1).item()
# ex_text_str = "随便播放一首专辑阁楼里的佛里的歌"
ex_text_str = "还有双鸭山到淮阴的汽车票吗13号的"
model = model.to("cpu")
print("该文本的类别是:%s" %label_name[predict(ex_text_str, text_pipeline)])
torch.Size([1, 100])
该文本的类别是:Travel-Query
四、总结
本周主要学了使用word2vec实现文本分类,其中主要了解了训练word2vec浅层模型,同时也更加深入地学习了梯度裁剪。