【BERT】深入理解BERT模型1——模型整体架构介绍

前言

BERT出自论文:《BERT:Pre-training of Deep Bidirectional Transformers for Language Understanding》 2019年

近年来,在自然语言处理领域,BERT模型受到了极为广泛的关注,很多模型中都用到了BERT-base或者是BERT模型的变体,而且在模型中增加了BERT预训练模型之后,许多NLP任务的模型性能都得到了很大程度的提升,这也说明了BERT模型的有效性。

由于BERT模型内容较多,想要深入理解该模型并不容易,所以我分了大概三篇博客来介绍BERT模型,第一篇(也就是本篇博客)主要介绍BERT模型的整体架构,对模型有一个整体的认识和了解;第二篇详细介绍BERT模型中的重点内容,包括它所提出的两个任务;第三篇从代码的角度来理解BERT模型。

目前我只完成了前两篇论文,地址如下,之后完成第三篇会进行更新。

第一篇:【BERT】深入理解BERT模型1——模型整体架构介绍

第二篇:【BERT】深入BERT模型2——模型中的重点内容,两个任务

第三篇:


BERT整体架构介绍

1、BERT模型基于Transformer架构实现,是一种全新的双向编码器语言模型。与ELMo、GPT等单相语言模型不同,BERT旨在构建一个双向的语言模型来更好地捕获语句间的上下文语义,使其在更多的下游任务上具有更强的泛化能力。因此,预训练完成的BERT模型被迁移到下游任务时,只需要再添加一个额外的输出层便可以进行微调,例如问答和语言推理任务,并不需要针对具体的任务进行模型架构的修改。

2、为了使NLP模型能够充分利用海量廉价的无标注数据信息,预训练语言模型应运而生。

通过模型预训练,我们可以从海量数据集中初步获取潜在的特征规律,再将这些共性特征移植到特定的任务模型中去,将学习到的知识进行迁移。具体来说,我们需要将模型在一个通用任务上进行参数训练,得到一套初始化参数,再将该初始化模型放置到具体任务中,通过进一步的训练来完成更加特殊的任务。

预训练模型的推广,使得许多NLP任务的性能获得了显著提升,它为模型提供了更好的初始化参数,大大提高了其泛化能力。

3、当前的预训练模型主要分为基于特征和微调两大类,但它们大都基于单向的语言模型来进行语言学习表征,这使得许多句子级别的下游任务无法达到最优的训练效果。本文提出的BERT模型(双向预训练表征模型),很大程度上缓解了单向模型带来的约束。同时,引入了“完形填空”和“上下句匹配”分别作为单词级别和句子级别的两大通用任务,对BERT模型进行训练。

基于特征无监督方法主要是指单词嵌入表征学习。首先将文本级别的输入输出为特征向量的形式,再将预训练好的嵌入向量作为下游任务的输入。

基于微调无监督方法主要是在,我们在某些通用任务上预训练完成的模型架构,可以被直接复制到下游任务中,下游任务根据自身需求修改目标输出,并利用该模型进行进一步的训练。也就是说,下游任务使用了和预训练相同的模型,但是获得了一个较优的初始化参数,我们需要对这些参数进行微调,从而在特殊任务上获得最优性能。

基于有监督数据的迁移学习,是基于存在大量有监督数据集的任务来获取预训练模型,例如自然语言推理和机器翻译。

4、BERT模型创造性地将Transformer中的Encoder架构引入预训练模型中,成为第一个使用双向表征的预训练语言模型。同时,为了适应该双向架构,BERT引入了两项新的NLP任务——完形填空和上下句匹配,类捕获词语级别和句子级别的表征,并使之具有更强的泛化能力。

5、具体方法:

BERT整体框架包含Pre-training和Fine-tuning两个阶段,Pre-training阶段,模型首先在设定的通用任务上,利用无标签数据进行训练。训练好的模型获得了一套初始化参数之后,再到Fine-tuning阶段,模型被迁移到特定任务中,利用有标签数据继续调整参数,知道在特定任务上重新收敛

BERT模型采用了Transformer中的Encoder架构,通过引入多头注意力机制,将Encoder块进行堆叠,形成最终的BERT架构。为了适应不同规模的任务,BERT将其结构分为了base和large两类,较小规模的base结构含有12个Encoder单元,每个单元含有12个Attention块,词向量维度为768;较大规模的large结构含有24个Encoder单元,每个单元中含有16个Attention块,词向量维度为1024。通过使用Transformer作为模型的主要框架,BERT能够更彻底地捕获语句中的双向关系,极大地提升了预训练模型在具体任务中的性能。

BERT模型的输入由三部分组成。除了传统意义上的token词向量外,BERT还引入了位置词向量和句子词向量。位置词向量的思想与Transformer一致,但BERT并未使用其计算公式,而是随机初始化后放入模型一同训练;句子词向量实质上是一个0-1表征,目的是区分输入段落中的上下句。这三种不同意义的词向量相加,构成了最终输入模型的词向量。

Pre-training:BERT的预训练部分使用了完形填空和上下句匹配两个无监督任务。“完形填空”代表了词语级别的预训练任务,该任务对输入句子中若干随机位置的字符进行遮盖,并利用上下文语境对遮盖字符进行预测。(MLM)“上下句匹配”代表了句子级别的预训练任务,该任务给出两个句子,利用句子之间的语义连贯性判定这两个句子是否存在上下句关系。这两个预训练任务对于大量NLP任务的架构具有更好的代表性,同时也更能匹配模型本身的双向架构,对模型的泛化能力有着巨大的提升帮助。

Fine-tuning:训练具体任务时,我们只需将具体任务中的输入输出传入预训练完成的BERT模型,继续调整参数直至模型再次收敛。该过程成为微调(Fine-tuning)。相比于预训练来说,微调的代价是极小的。在大部分NLP任务中,我们只需要在GPU上对模型进行几个小时的微调,便可使模型在具体任务上收敛,完成训练。

6、实验结果及结论

结果表明,即使是在有标签数据量较小的数据集上,随着模型规模的提高,任务的准确度都获得了显著的提升。进一步可得出结论:如果模型已经经过过滤充分的预训练,那么当将模型缩放到一个极限的规模尺寸时,仍然能够在小规模的微调任务上产生较大的改进。

预训练模型的迁移学习,逐渐成为语言理解系统中不可或缺的一部分,它甚至能够使得一些低资源的任务从深度单向架构中受益。


以上就是对BERT模型理论知识的整体理解,看完之后应该能有个整体的认识吧。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/281080.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

设计模式(4)--对象行为(11)--访问者

1. 意图 表示一个作用于某对象结构中的各元素的操作。 使你可以在不改变各元素的类的前提下定义于作用于这些元素的新操作。 2. 五种角色 抽象访问者(Visitor)、具体访问者(Concrete Visitor)、抽象元素(Element)、 具体元素(Concrete Element)、对象结构(ObjectStructure) 3…

netty源码:(40)ReplayingDecoder

ReplayingDecoder是ByteToMessageDecoder的子类,我们继承这个类时,也要实现decode方法,示例如下: package cn.edu.tju;import io.netty.buffer.ByteBuf; import io.netty.channel.ChannelHandlerContext; import io.netty.handle…

MySQL基础学习: 由delete和insert操作导致的死锁问题

一、问题复现:表结构 CREATE TABLE user_props (user_id bigint NOT NULL ,prop_key varchar(100) NOT NULL ,prop_value varchar(100) NOT NULL,PRIMARY KEY (user_id,prop_key) )二、死锁测试 (1)开启两个事务 (2)…

啥是子网掩码

IP地址是计算机在网络内的唯一标识,而子网掩码顾名思义是用于划分子网的。 子网掩码不能单独存在,它必须结合IP地址一起使用。子网掩码由连续的1和0组成,连续的1表示 网络地址,连续的0表示主机地址。将某个IP地址划分成 网络地址…

4.36 构建onnx结构模型-Where

前言 构建onnx方式通常有两种: 1、通过代码转换成onnx结构,比如pytorch —> onnx 2、通过onnx 自定义结点,图,生成onnx结构 本文主要是简单学习和使用两种不同onnx结构, 下面以 Where 结点进行分析 方式 方法一…

设计模式-调停者模式

设计模式专栏 模式介绍模式特点应用场景调停者模式与命令模式的比较代码示例Java实现调停者模式Python实现调停者模式 调停者模式在spring中的应用 模式介绍 调停者模式是一种软件设计模式,主要用于模块间的解耦,通过避免对象之间显式的互相指向&#x…

解决阿里云远程连接yum无法安装问题(Ubuntu 22.04)

解决阿里云远程连接yum无法安装问题(Ubuntu 22.04) 第一步 进入阿里云远程连接后,尝试安装宝塔面包第二步:尝试更新软件包等一些列操作第三步:完成上述操作之后,尝试安装yum第四步:尝试更换清华…

计算机网络【Google的TCP BBR拥塞控制算法深度解析】

Google的TCP BBR拥塞控制算法深度解析 宏观背景下的BBR 慢启动、拥塞避免、快速重传、快速恢复: 说实话,这些机制完美适应了1980年代的网络特征,低带宽,浅缓存队列,美好持续到了2000年代。 随后互联网大爆发&#x…

stm32 HAL库 4096线ABZ编码器

[TOC]目录 ABZ编码器 4096线 买的是这个 AB相代表计数方向,Z代表过零点 cubemx配置 定时器Encoder 也可以选上DMA 中断 Z相GPIO中断 找一个空闲管脚 打开对应中断 代码 不用DMA int main(void) {short Enc_cnt 0;HAL_TIM_Encoder_Start_IT(&ht…

4.33 构建onnx结构模型-Expand

前言 构建onnx方式通常有两种: 1、通过代码转换成onnx结构,比如pytorch —> onnx 2、通过onnx 自定义结点,图,生成onnx结构 本文主要是简单学习和使用两种不同onnx结构, 下面以 Expand 结点进行分析 方式 方法一…

最优轨迹生成(二)—— 无约束BVP轨迹优化

本系列文章是学习深蓝学院-移动机器人运动规划课程第五章最优轨迹生成 过程中所记录的笔记,本系列文章共包含四篇文章,依次介绍了微分平坦特性、无约束BVP轨迹优化、无约束BIVP轨迹优、 带约束轨迹优化等内容 本系列文章链接如下: 最优轨迹生…

8868体育助力意甲罗马俱乐部 迪巴拉有望付出

8868体育助力意甲罗马俱乐部 迪巴拉有望付出 意甲罗马俱乐部是8868体育合作球队之一,本赛季,在意甲第14轮的比赛中,罗马客场2-1战胜萨索洛,积分上升到意甲第4位。 有报道称,迪巴拉在对阵佛罗伦萨的比赛中受伤&#xff…

操作注册表

命令说明: regedit(快速打开注册表命令) reg query 显示注册表的所有子项和值 reg delete 从注册表删除项或值 /v EntryName (注册表项和子项名称) 删除子项下的特定项。如果未指定子项,则将删除子项…

将本地工作空间robot_ws上传到gitee仓库

git config --global user.name "geniusChinaHN" git config --global user.email "12705243geniuschinahnuser.noreply.gitee.com" cd ~/robot_ws #git init#创建原始仓库时候用 git add . git commit -m "上传文件内容描述" #git remote add r…

ISO27001 信息安全管理体系认证,让你的信息安全无懈可击

你是否担心过自己的个人信息被泄露?你的企业是否因为信息安全问题而遭受过损失?如果是,那么你一定不能错过 ISO27001 信息安全管理体系认证! 🌟什么是 ISO27001 认证? ISO27001 是由国际标准化组织&#xf…

设计模式之初始设计模式和UML图

学习的最大理由是想摆脱平庸,早一天就多一份人生的精彩;迟一天就多一天平庸的困扰。各位小伙伴,如果您: 想系统/深入学习某技术知识点… 一个人摸索学习很难坚持,想组团高效学习… 想写博客但无从下手,急需…

SNMP获取Linux系统信息

snmp测试 snmpwalk -v 2c -c public123 192.168.227.133 system[rootlocalhost ~]# snmpwalk -v 2c -c public123 192.168.227.133 system SNMPv2-MIB::sysDescr.0 STRING: Linux localhost.localdomain 5.10.0-60.18.0.50.oe2203.x86_64 #1 SMP Wed Mar 30 03:12:24 UTC 202…

2022年全球运维大会(GOPS深圳站)-核心PPT资料下载

一、峰会简介 GOPS 主要面向运维行业的中高端技术人员,包括运维、开发、测试、架构师等群体。目的在于帮助IT技术从业者系统学习了解相关知识体系,让创新技术推动社会进步。您将会看到国内外知名企业的相关技术案例,也能与国内顶尖的技术专家…

Unity坦克大战开发全流程——1)需求分析

实践项目:需求分析 该游戏共有三个主要部分:UI、数据储存、核心游戏逻辑,下面我们将从开始场景、游戏场景、结束场景三个角度切入进行分析。

教练技术中要注意的两点

今天看到2022 china devopsday中陈老师不错的关于教练技术描述的两个注意点的PPT,不错,分享下: